• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Death from respiratory diseases and temperature in Shiraz, Iran (2006-2011)

    Author(s)
    Dadbakhsh, Manizhe
    Khanjani, Narges
    Bahrampour, Abbas
    Haghighi, Pegah Shoae
    Griffith University Author(s)
    Bahrampour, Abbas
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Some studies have suggested that the number of deaths increases as temperatures drops or rises above human thermal comfort zone. The present study was conducted to evaluate the relation between respiratory-related mortality and temperature in Shiraz, Iran. In this ecological study, data about the number of respiratory-related deaths sorted according to age and gender as well as average, minimum, and maximum ambient air temperatures during 2007–2011 were examined. The relationship between air temperature and respiratory-related deaths was calculated by crude and adjusted negative binomial regression analysis. It was adjusted ...
    View more >
    Some studies have suggested that the number of deaths increases as temperatures drops or rises above human thermal comfort zone. The present study was conducted to evaluate the relation between respiratory-related mortality and temperature in Shiraz, Iran. In this ecological study, data about the number of respiratory-related deaths sorted according to age and gender as well as average, minimum, and maximum ambient air temperatures during 2007–2011 were examined. The relationship between air temperature and respiratory-related deaths was calculated by crude and adjusted negative binomial regression analysis. It was adjusted for humidity, rainfall, wind speed and direction, and air pollutants including CO, NOx, PM10, SO2, O3, and THC. Spearman and Pearson correlations were also calculated between air temperature and respiratory-related deaths. The analysis was done using MINITAB16 and STATA 11. During this period, 2598 respiratory-related deaths occurred in Shiraz. The minimum number of respiratory-related deaths among all subjects happened in an average temperature of 25 °C. There was a significant inverse relationship between average temperature- and respiratory-related deaths among all subjects and women. There was also a significant inverse relationship between average temperature and respiratory-related deaths among all subjects, men and women in the next month. The results suggest that cold temperatures can increase the number of respiratory-related deaths and therefore policies to reduce mortality in cold weather, especially in patients with respiratory diseases should be implemented.
    View less >
    Journal Title
    International Journal of Biometeorology
    Volume
    61
    Issue
    2
    DOI
    https://doi.org/10.1007/s00484-016-1206-z
    Subject
    Other physical sciences
    Atmospheric sciences
    Health services and systems
    Public health
    Science & Technology
    Life Sciences & Biomedicine
    Physical Sciences
    Biophysics
    Environmental Sciences
    Publication URI
    http://hdl.handle.net/10072/409849
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander