• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Response of biomass, hydrology and biogeochemistry to alternative approaches of cutting a northern forest: model comparisons

    Author(s)
    Valipour, M
    Johnson, CE
    Battles, JJ
    Campbell, JL
    Fahey, TJ
    Fakhraei, H
    Driscoll, CT
    Griffith University Author(s)
    Johnson, Chris E.
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    The biogeochemical model, PnET-BGC, was modified and parameterized using field data from an experimental whole-tree harvest of watershed (W5) in 1983–1984 at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. The model simulated the hydrology, biomass accumulation, and soil solution and stream water chemistry responses to forest cutting. The parameterized model was then applied to other experimentally cut watersheds at the HBEF; including a devegetation experiment (W2; devegetation and herbicide treatment) and a commercial strip-cut (W4) to evaluate the ability of the model to depict ecosystem responses to a ...
    View more >
    The biogeochemical model, PnET-BGC, was modified and parameterized using field data from an experimental whole-tree harvest of watershed (W5) in 1983–1984 at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. The model simulated the hydrology, biomass accumulation, and soil solution and stream water chemistry responses to forest cutting. The parameterized model was then applied to other experimentally cut watersheds at the HBEF; including a devegetation experiment (W2; devegetation and herbicide treatment) and a commercial strip-cut (W4) to evaluate the ability of the model to depict ecosystem responses to a range of cutting regimes. Revisions of algorithms of PnET-BGC improved model performance in predicting short- and long-term dynamics of major elements following various approaches to forest cutting. Despite some initial differences in species composition and biomass accumulation rates among the cut watersheds, simulations of total forest biomass for all three treated watersheds (W2, W4 and W5) were consistent with expectations based on the growth trajectory of a second-growth, reference watershed (W6) at the HBEF. The modified two-soil-layer PnET-BGC captured the immediate increase in stream concentrations of NO3−, Ca2+, Mg2+ and Na+ as well as enhanced adsorption of SO42− following cuttings and indicated a greater response for the devegetation and the whole-tree harvest treatments than the sequential strip-cut of W4. Simulations indicated intense NO3− leaching with the devegetation and herbicide treatment and consequent accelerated decline in soil base saturation and a slower recovery pattern during forest regrowth by the end of the simulation period (2100) compared to the other treatments.
    View less >
    Journal Title
    Biogeochemistry
    DOI
    https://doi.org/10.1007/s10533-021-00862-z
    Note
    This publication has been entered in Griffith Research Online as an advanced online version.
    Subject
    Environmental biogeochemistry
    Publication URI
    http://hdl.handle.net/10072/409931
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander