• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Genetic analysis of threatened Australian grayling Prototroctes maraena suggests recruitment to coastal rivers from an unstructured marine larval source population

    Thumbnail
    View/Open
    72136_1.pdf (5.573Mb)
    Author(s)
    Schmidt, DJ
    Crook, DA
    O'Connor, JP
    Hughes, JM
    Griffith University Author(s)
    Hughes, Jane M.
    Schmidt, Daniel J.
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    Population genetic variation of Australian grayling Prototroctes maraena was examined to determine whether the dispersal strategy of this amphidromous species favours retention of larvae and juveniles in close proximity to their natal river, or mixing of populations via marine dispersal. Variation in microsatellite and mitochondrial DNA markers was unstructured and differentiation was indistinguishable from zero across four coastal rivers spanning approximately one-quarter of the continental range of the species. This result indicates that the marine larval and juvenile phase probably facilitates extensive gene flow among ...
    View more >
    Population genetic variation of Australian grayling Prototroctes maraena was examined to determine whether the dispersal strategy of this amphidromous species favours retention of larvae and juveniles in close proximity to their natal river, or mixing of populations via marine dispersal. Variation in microsatellite and mitochondrial DNA markers was unstructured and differentiation was indistinguishable from zero across four coastal rivers spanning approximately one-quarter of the continental range of the species. This result indicates that the marine larval and juvenile phase probably facilitates extensive gene flow among coastal rivers and agrees with a previous analysis of otolith chemistry that suggested larvae probably move into the sea rather than remain in estuaries. It appears likely that the dispersal strategy of P. maraena would enable recolonization of rivers that experience localized extinction provided that connectivity between freshwater habitats and the sea is sufficient to permit migration and that enough source populations remain intact to support viability of the wider population.
    View less >
    Journal Title
    Journal of Fish Biology
    Volume
    78
    Issue
    1
    DOI
    https://doi.org/10.1111/j.1095-8649.2010.02844.x
    Copyright Statement
    © 2011 The Fisheries Society of the British Isles. Published by Blackwell Publishing Ltd. This is the author-manuscript version of the paper. Reproduced in accordance with the copyright policy of the publisher. The definitive version is available at http://onlinelibrary.wiley.com/
    Subject
    Ecology
    Population ecology
    Life histories
    Genetics not elsewhere classified
    Zoology
    Fisheries sciences
    Publication URI
    http://hdl.handle.net/10072/41012
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander