• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Ultralight biodegradable 3D-g-C3N4 aerogel for advanced oxidation water treatment driven by oxygen delivery channels and triphase interfaces

    Author(s)
    Huang, Qin
    Wang, Chen
    Hao, Derek
    Wei, Wei
    Wang, Luochun
    Ni, Bing-Jie
    Griffith University Author(s)
    Hao, Derek
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    The development of highly efficient and separation-free, low-cost photocatalysts have crucial prospect for sustainable wastewater treatment, because it is able to eliminate the hazards of organic pollutant with facile operation. However, the relatively high cost of previous photocatalysts highly obstructs the application of these materials. Herein, we report a cost-effective and distinct konjac/graphitic carbon nitride (KCN) aerogel, which has superior performance for advanced oxidation water treatment. The abundant porous structure of the ultralight aerogel ensures the rapid adsorption of pollutants, which is much helpful ...
    View more >
    The development of highly efficient and separation-free, low-cost photocatalysts have crucial prospect for sustainable wastewater treatment, because it is able to eliminate the hazards of organic pollutant with facile operation. However, the relatively high cost of previous photocatalysts highly obstructs the application of these materials. Herein, we report a cost-effective and distinct konjac/graphitic carbon nitride (KCN) aerogel, which has superior performance for advanced oxidation water treatment. The abundant porous structure of the ultralight aerogel ensures the rapid adsorption of pollutants, which is much helpful for the further photodegradation process. During the working process, the aerogel is half submerged in pollutant solution and half exposed in air, forming a distinctive gas-solid-liquid triphase system, where oxygen can be rapidly delivered into the solution via the porous channels, boosting the generation of hydroxyl and superoxide radicals. Meanwhile, the aerogel structure can separate the g-C3N4, obstruct its stacking, as well as improve the light absorption rate. The synthesis, utilization and readily biodegradable treatment of the KCN aerogels are all green and eco-friendly, which is extremely constructive for strategies to develop novel highly efficient photocatalytic materials.
    View less >
    Journal Title
    Journal of Cleaner Production
    Volume
    288
    DOI
    https://doi.org/10.1016/j.jclepro.2020.125091
    Subject
    Environmental engineering
    Manufacturing engineering
    Science & Technology
    Life Sciences & Biomedicine
    Green & Sustainable Science & Technology
    Publication URI
    http://hdl.handle.net/10072/410226
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander