• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Mechanism of surface and interface engineering under diverse dimensional combinations: the construction of efficient nanostructured MXene-based photocatalysts

    Author(s)
    Bai, Xiaojuan
    Hou, Shanshan
    Wang, Xuyu
    Hao, Derek
    Sun, Boxuan
    Jia, Tianqi
    Shi, Rui
    Ni, Bing-Jie
    Griffith University Author(s)
    Hao, Derek
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    As an emerging and growing family of two-dimensional transition metal carbides, carbonitrides, and nitrides, MXenes have received increasingly close attention due to their intriguing surface features, excellent electrical conductivity, and layered structures. The spatial conditions ascribed by the nanostructure of MXene-based photocatalysts are the decisive factor for their surface and interface characteristics, which play a vital role in expanding the light response range and inhibiting the recombination of photoinduced carriers. Although some reviews focus on the properties, synthesis strategies, and applications of ...
    View more >
    As an emerging and growing family of two-dimensional transition metal carbides, carbonitrides, and nitrides, MXenes have received increasingly close attention due to their intriguing surface features, excellent electrical conductivity, and layered structures. The spatial conditions ascribed by the nanostructure of MXene-based photocatalysts are the decisive factor for their surface and interface characteristics, which play a vital role in expanding the light response range and inhibiting the recombination of photoinduced carriers. Although some reviews focus on the properties, synthesis strategies, and applications of MXene-based photocatalysts, there is still a lack of a comprehensive review that can provide the basis for MXene-based photocatalysts from the perspective of spatial conditions created by various nanostructures. In this review, we systemically summarize the action principles of surfaces and interfaces in MXene-based photocatalysts and highlight the impact of spatial conditions on surface and interface engineering by analyzing recent research on MXene-based photocatalysts. Furthermore, we put forward the advantages and challenges of the research direction of MXenes and MXene-based photocatalysts in the future.
    View less >
    Journal Title
    Catalysis Science & Technology
    Volume
    11
    Issue
    15
    DOI
    https://doi.org/10.1039/d1cy00803j
    Subject
    Inorganic chemistry
    Physical chemistry
    Chemical engineering
    Science & Technology
    Physical Sciences
    Chemistry, Physical
    Chemistry
    GRAPHITIC CARBON NITRIDE
    Publication URI
    http://hdl.handle.net/10072/410234
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander