• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Plant growth responses to soil-applied hydrothermally-carbonised waste amendments: a meta-analysis

    Author(s)
    Luutu, Henry
    Rose, Michael T
    McIntosh, Shane
    Van Zwieten, Lukas
    Rose, Terry
    Griffith University Author(s)
    Van Zwieten, Lukas
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Background and aims: Hydrothermal carbonisation (HTC) is an alternative thermochemical method for conversion of waste to carbonised material. HTC converts high moisture biomass into hydrochar, with substantially lower energy inputs than pyrolysis since pre-drying is not required. Hydrochar is increasingly being proposed as a soil amendment; however, hydrochar addition to soils has inconsistent effects on germination and plant growth. Here, we aggregated hydrochar-plant studies to ascertain the effect of hydrochar on plant production. Method: Using meta-analysis, data from 43 published articles with 437 pairwise comparisons ...
    View more >
    Background and aims: Hydrothermal carbonisation (HTC) is an alternative thermochemical method for conversion of waste to carbonised material. HTC converts high moisture biomass into hydrochar, with substantially lower energy inputs than pyrolysis since pre-drying is not required. Hydrochar is increasingly being proposed as a soil amendment; however, hydrochar addition to soils has inconsistent effects on germination and plant growth. Here, we aggregated hydrochar-plant studies to ascertain the effect of hydrochar on plant production. Method: Using meta-analysis, data from 43 published articles with 437 pairwise comparisons was synthesised to investigate the effect of hydrochar on seed germination or plant growth, and the driving factors. Results: On average, hydrochar application significantly reduced both seed germination (-38 %) and shoot biomass (-10 %) across hydrochar properties and experimental conditions. Negative impacts of hydrochar on seed germination and shoot biomass were greatest when application rates of hydrochar were above 11 t/ha (for all feedstocks except woody biomass) and 16 t/ha, respectively. At a standardised application rate of 10 t/ha, unmodified sewage sludge, animal manure and green waste hydrochars had a significant negative effect on germination, whilst food waste and woody hydrochars had no effect. Importantly, modification of hydrochar to lower toxin content significantly mitigated the negative effect on both shoot biomass and germination. Conclusions: Findings provide a basis for further research to elucidate mechanisms leading to the different plant responses following hydrochar application. Fundamentally, interactions among hydrochar dose, properties and edaphic variables are essential to understand when and where benefits may be achieved.
    View less >
    Journal Title
    Plant and Soil
    DOI
    https://doi.org/10.1007/s11104-021-05185-4
    Note
    This publication has been entered in Griffith Research Online as an advanced online version.
    Subject
    Environmental sciences
    Biological sciences
    Agricultural biotechnology
    Science & Technology
    Life Sciences & Biomedicine
    Agronomy
    Plant Sciences
    Soil Science
    Publication URI
    http://hdl.handle.net/10072/410303
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander