Magnetic dichroism in few-photon ionization of polarized atoms
View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Acharya, BP
Dodson, M
Dubey, S
Romans, KL
De Silva, AHNC
Foster, K
Russ, O
Bartschat, K
Douguet, N
Fischer, D
Griffith University Author(s)
Year published
2021
Metadata
Show full item recordAbstract
We consider few-photon ionization of atomic lithium by linearly polarized femtosecond laser pulses and demonstrate that asymmetries of the electron angular distribution can occur for initially polarized (2p, m=+1) target atoms. The dependence of the photoelectron emission angle relative to the electric field direction is investigated at different laser intensities and wavelengths. The experimental spectra show excellent agreement with numerical solutions of the time-dependent Schrödinger equation. In the perturbative picture, the angular shift is traced back to interferences between partial waves with mean magnetic quantum ...
View more >We consider few-photon ionization of atomic lithium by linearly polarized femtosecond laser pulses and demonstrate that asymmetries of the electron angular distribution can occur for initially polarized (2p, m=+1) target atoms. The dependence of the photoelectron emission angle relative to the electric field direction is investigated at different laser intensities and wavelengths. The experimental spectra show excellent agreement with numerical solutions of the time-dependent Schrödinger equation. In the perturbative picture, the angular shift is traced back to interferences between partial waves with mean magnetic quantum number (m)≠0. This observation allows us to obtain quantum mechanical information on the final electronic state.
View less >
View more >We consider few-photon ionization of atomic lithium by linearly polarized femtosecond laser pulses and demonstrate that asymmetries of the electron angular distribution can occur for initially polarized (2p, m=+1) target atoms. The dependence of the photoelectron emission angle relative to the electric field direction is investigated at different laser intensities and wavelengths. The experimental spectra show excellent agreement with numerical solutions of the time-dependent Schrödinger equation. In the perturbative picture, the angular shift is traced back to interferences between partial waves with mean magnetic quantum number (m)≠0. This observation allows us to obtain quantum mechanical information on the final electronic state.
View less >
Journal Title
Physical Review A
Volume
104
Issue
5
Copyright Statement
© 2021 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Atomic, molecular and optical physics