• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Magnetic dichroism in few-photon ionization of polarized atoms

    View/Open
    Bartschat523839-Accepted.pdf (4.840Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Acharya, BP
    Dodson, M
    Dubey, S
    Romans, KL
    De Silva, AHNC
    Foster, K
    Russ, O
    Bartschat, K
    Douguet, N
    Fischer, D
    Griffith University Author(s)
    Bartschat, Klaus
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    We consider few-photon ionization of atomic lithium by linearly polarized femtosecond laser pulses and demonstrate that asymmetries of the electron angular distribution can occur for initially polarized (2p, m=+1) target atoms. The dependence of the photoelectron emission angle relative to the electric field direction is investigated at different laser intensities and wavelengths. The experimental spectra show excellent agreement with numerical solutions of the time-dependent Schrödinger equation. In the perturbative picture, the angular shift is traced back to interferences between partial waves with mean magnetic quantum ...
    View more >
    We consider few-photon ionization of atomic lithium by linearly polarized femtosecond laser pulses and demonstrate that asymmetries of the electron angular distribution can occur for initially polarized (2p, m=+1) target atoms. The dependence of the photoelectron emission angle relative to the electric field direction is investigated at different laser intensities and wavelengths. The experimental spectra show excellent agreement with numerical solutions of the time-dependent Schrödinger equation. In the perturbative picture, the angular shift is traced back to interferences between partial waves with mean magnetic quantum number (m)≠0. This observation allows us to obtain quantum mechanical information on the final electronic state.
    View less >
    Journal Title
    Physical Review A
    Volume
    104
    Issue
    5
    DOI
    https://doi.org/10.1103/PhysRevA.104.053103
    Copyright Statement
    © 2021 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Atomic, molecular and optical physics
    Publication URI
    http://hdl.handle.net/10072/410549
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander