• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Human norovirus GII.4(MI001) P dimer binds fucosylated and sialylated carbohydrates

    Author(s)
    Wegener, H
    Mallagaray, A
    Schone, T
    Peters, T
    Lockhauserbaumer, J
    Yan, H
    Uetrecht, C
    Hansman, GS
    Taube, S
    Griffith University Author(s)
    Hansman, Grant S.
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Human noroviruses (HuNoV), members of the family Caliciviridae, are the major cause of acute viral gastroenteritis worldwide. Successful infection is linked to the ability of the protruding (P) domain of the viral capsid to bind histo-blood group antigens (HBGA). Binding to gangliosides plays a major role for many nonhuman calici- and noroviruses. Increasing evidence points to a broader role of sialylated carbohydrates such as gangliosides in norovirus infection. Here, we compare HBGA and ganglioside binding of a GII.4 HuNoV variant (MI001), previously shown to be infectious in a HuNoV mouse model. Saturation transfer ...
    View more >
    Human noroviruses (HuNoV), members of the family Caliciviridae, are the major cause of acute viral gastroenteritis worldwide. Successful infection is linked to the ability of the protruding (P) domain of the viral capsid to bind histo-blood group antigens (HBGA). Binding to gangliosides plays a major role for many nonhuman calici- and noroviruses. Increasing evidence points to a broader role of sialylated carbohydrates such as gangliosides in norovirus infection. Here, we compare HBGA and ganglioside binding of a GII.4 HuNoV variant (MI001), previously shown to be infectious in a HuNoV mouse model. Saturation transfer difference nuclear magnetic resonance spectroscopy, native mass spectrometry (MS) and surface plasmon resonance spectroscopy were used to characterize binding epitopes, affinities, stoichiometry and dynamics, focusing on 3'-sialyllactose, the GM3 ganglioside saccharide and B antigen. Binding was observed for 3'-sialyllactose and various HBGAs following a multistep binding process. Intrinsic affinities (Kd) of fucose, 3'-sialyllactose and B antigen were determined for the individual binding steps. Stronger affinities were observed for B antigen over 3'-sialyllactose and fucose, which bound in the mM range. Binding stoichiometry was analyzed by native MS showing the presence of four B antigens or two 3'-sialyllactose in the complex. Epitope mapping of 3'-sialyllactose revealed direct interaction of alpha2,3-linked sialic acid with the P domain. The ability of HuNoV to engage multiple carbohydrates emphasizes the multivalent nature of norovirus glycan-specificity. Our findings reveal direct binding of a GII.4 HuNoV P dimer to alpha2,3-linked sialic acid and support a broader role of ganglioside binding in norovirus infection.
    View less >
    Journal Title
    Glycobiology
    Volume
    27
    Issue
    11
    DOI
    https://doi.org/10.1093/glycob/cwx078
    Subject
    Biological sciences
    Biomedical and clinical sciences
    Science & Technology
    Life Sciences & Biomedicine
    Biochemistry & Molecular Biology
    gangliosides
    HBGAs
    Publication URI
    http://hdl.handle.net/10072/410718
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander