• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Dynamic modelling and simulation of dental implant insertion process-A finite element study

    Thumbnail
    View/Open
    71898_2.pdf (4.893Mb)
    Author(s)
    Guan, Hong
    van Staden, Rudi C
    Johnson, Newell W
    Loo, Yew-Chaye
    Griffith University Author(s)
    Loo, Yew-Chaye
    Guan, Hong
    Johnson, Newell W.
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    Objectives: using the finite element technique, the stress characteristics within the mandible are evaluated during a dynamic simulation of the implant insertion process. Implantation scenarios considered are implant thread forming (S1), cutting (S2) and the combination of forming and cutting (S3). Ultimately, the outcome of this study will provide an improved understanding of the failure mechanism consequential to the stress distribution characteristics in the mandible during the implantation process. Material and methods: parameters considered herein include bone cavity diameters of 3.9 mm (for S2), 4.25 mm (for S1) and a ...
    View more >
    Objectives: using the finite element technique, the stress characteristics within the mandible are evaluated during a dynamic simulation of the implant insertion process. Implantation scenarios considered are implant thread forming (S1), cutting (S2) and the combination of forming and cutting (S3). Ultimately, the outcome of this study will provide an improved understanding of the failure mechanism consequential to the stress distribution characteristics in the mandible during the implantation process. Material and methods: parameters considered herein include bone cavity diameters of 3.9 mm (for S2), 4.25 mm (for S1) and a tapered cavity of diameters linearly varying from 3.9 to 4.25 mm (for S3). The bone-implant system is modelled using three-dimensional tetrahedral elements. Idealised bone and implant interaction properties are assumed. The stress profiles in the mandible are examined for all bone cavity diameters. Results and conclusion: the stress levels within the cancellous and cortical bone for S1 are significantly reduced when compared to scenarios S2 and S3. For S3, during the initial insertion steps, the stress is marginally less than that for S2. Close to the end of the insertion process, the stress level within the cancellous bone in S3 is approximately half way between that of S1 and S2. Generally for all scenarios, as the insertion depth increases the stress increases less significantly in the cortical bone than in the cancellous bone. Overall, different implant surface contact areas are the major contributors to the different stress characteristics of each scenario.
    View less >
    Journal Title
    Finite Elements in Analysis and Design
    Volume
    47
    Issue
    8
    DOI
    https://doi.org/10.1016/j.finel.2011.03.005
    Copyright Statement
    © 2011 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Mathematical sciences
    Engineering
    Biomechanical engineering
    Publication URI
    http://hdl.handle.net/10072/41082
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander