OFET based explosive sensors using diketopyrrolopyrrole and metal organic framework composite active channel material
Author(s)
Surya, Sandeep G
Nagarkar, Sanjog S
Ghosh, Sujit K
Sonar, Prashant
Rao, V Ramgopal
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
Detection of explosives using organic compounds poses many challenges, primarily because of the stability of the organic compound at nominal operating conditions. This paper addresses the aforementioned challenge by reporting a new organic material composite, whose stability is suitable for practical applications. Additionally, the reported organic composite is also capable of detecting vapors of Nitro based explosive compounds such as 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX). An alternating copolymer of thiophene flanked diketopyrrolopyrrole with thienylene-vinylene-thienylene (PDPP-TVT) ...
View more >Detection of explosives using organic compounds poses many challenges, primarily because of the stability of the organic compound at nominal operating conditions. This paper addresses the aforementioned challenge by reporting a new organic material composite, whose stability is suitable for practical applications. Additionally, the reported organic composite is also capable of detecting vapors of Nitro based explosive compounds such as 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX). An alternating copolymer of thiophene flanked diketopyrrolopyrrole with thienylene-vinylene-thienylene (PDPP-TVT) was used as a solution processable and spin coatable organic semiconductor active channel material for the organic field effect transistor (OFET) sensor. A composite of PDPP-TVT and metal organic framework (MOF) was used as a receptor and pre-concentrator sites for sensing of the explosive analytes. The sensor devices were characterized and the receptor sites were confirmed by the Fourier Transform Infrared Spectroscopy (FTIR) and atomic force microscopy (AFM). The detection of viable analytes is recognized by the percentage change in the saturated drain current (%ΔIDsat) obtained by the current (I)-voltage (V) characteristics with and without the analyte. The corresponding %ΔIDsat recorded for nitrobenzene (NB), dinitrobenzene (DNB), nitromethane (NM), TNT and RDX are -7%, 2%, 24%, 81% and 50%, respectively.
View less >
View more >Detection of explosives using organic compounds poses many challenges, primarily because of the stability of the organic compound at nominal operating conditions. This paper addresses the aforementioned challenge by reporting a new organic material composite, whose stability is suitable for practical applications. Additionally, the reported organic composite is also capable of detecting vapors of Nitro based explosive compounds such as 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX). An alternating copolymer of thiophene flanked diketopyrrolopyrrole with thienylene-vinylene-thienylene (PDPP-TVT) was used as a solution processable and spin coatable organic semiconductor active channel material for the organic field effect transistor (OFET) sensor. A composite of PDPP-TVT and metal organic framework (MOF) was used as a receptor and pre-concentrator sites for sensing of the explosive analytes. The sensor devices were characterized and the receptor sites were confirmed by the Fourier Transform Infrared Spectroscopy (FTIR) and atomic force microscopy (AFM). The detection of viable analytes is recognized by the percentage change in the saturated drain current (%ΔIDsat) obtained by the current (I)-voltage (V) characteristics with and without the analyte. The corresponding %ΔIDsat recorded for nitrobenzene (NB), dinitrobenzene (DNB), nitromethane (NM), TNT and RDX are -7%, 2%, 24%, 81% and 50%, respectively.
View less >
Journal Title
Sensors and Actuators B: Chemical
Volume
223
Subject
Atomic, molecular and optical physics
Analytical chemistry
Materials engineering
Science & Technology
Physical Sciences
Technology
Chemistry, Analytical
Electrochemistry