• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Opportunistic emulation of computationally expensive simulations via Deep Learning

    Thumbnail
    View/Open
    Sanderson526602-Published.pdf (2.424Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Sanderson, Conrad
    Pagendam,Dan
    Power, Brendan
    Bennett, Frederick
    Darnell,Ross
    Griffith University Author(s)
    Sanderson, Conrad
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    With the underlying aim of increasing efficiency of computational modelling pertinent for managing and protecting the Great Barrier Reef, we perform a preliminary investigation on the use of deep neural networks for opportunistic model emulation of APSIM models, by repurposing an existing large dataset containing the outputs of APSIM model runs. The dataset has not been specifically tailored for the model emulation task. We employ two neural network architectures for the emulation task: densely connected feed-forward neural network (FFNN), and gated recurrent unit feeding into FFNN (GRU-FFNN), a type of a recurrent neural ...
    View more >
    With the underlying aim of increasing efficiency of computational modelling pertinent for managing and protecting the Great Barrier Reef, we perform a preliminary investigation on the use of deep neural networks for opportunistic model emulation of APSIM models, by repurposing an existing large dataset containing the outputs of APSIM model runs. The dataset has not been specifically tailored for the model emulation task. We employ two neural network architectures for the emulation task: densely connected feed-forward neural network (FFNN), and gated recurrent unit feeding into FFNN (GRU-FFNN), a type of a recurrent neural network. Various configurations of the architectures are trialled. A minimum correlation statistic is employed to identify clusters of APSIM scenarios that can be aggregated to form training sets for model emulation. We focus on emulating four important outputs of the APSIM model: (i) runoff – the amount of water removed as runoff, (ii) soil_loss – the amount of soil lost via erosion, (iii) DINrunoff – the mass of dissolved inorganic nitrogen exported in runoff, and (iv) Nleached – the mass of nitrogen leached in water draining to the water table. The GRU-FFNN architecture with three hidden layers and 128 units per layer provides good emulation of runoff and DINrunoff. However, soil_loss and Nleached were emulated relatively poorly under a wide range of the considered architectures; the emulators failed to capture variability at higher values of these two outputs. While the opportunistic data available from past modelling activities provides a large and useful dataset for exploring APSIM emulation, it may not be sufficiently rich enough for successful deep learning of more complex model dynamics. Design of Computer Experiments may be required to generate more informative data to emulate all output variables of interest. We also suggest the use of synthetic meteorology settings to allow the model to be fed a wide range of inputs. These need not all be representative of normal conditions, but can provide a denser, more informative dataset from which complex relationships between input and outputs can be learned.
    View less >
    Conference Title
    The 24th International Congress on Modelling and Simulation (MODSIM2021)
    DOI
    https://doi.org/10.36334/modsim.2021.l1.sanderson
    Copyright Statement
    © The Authors 2021. These proceedings are licensed under the terms of the Creative Commons Attribution 4.0 International CC BY License (http://creativecommons.org/licenses/by/4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you attribute MSSANZ and the original author(s) and source, provide a link to the Creative Commons licence and indicate if changes were made. Images or other third party material are included in this licence, unless otherwise indicated in a credit line to the material.
    Publication URI
    http://hdl.handle.net/10072/411123
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander