Finite element modelling of the progressive collapse of post-and-beam mass timber building substructures under edge and corner column removal scenarios

View/ Open
Embargoed until: 2024-01-07
File version
Accepted Manuscript (AM)
Author(s)
Lyu, CH
Gilbert, BP
Guan, H
Karampour, H
Gunalan, S
Griffith University Author(s)
Year published
2022
Metadata
Show full item recordAbstract
The structural behaviour of mass timber buildings under a load bearing element removal scenario is complex. To well understand this phenomenon and ultimately develop scientifically based design guidelines against progressive collapse for this type of buildings, there is a need to develop a Finite Element model which accurately captures the non-linear response, load redistribution mechanisms (alternative load paths) and failure modes of such buildings. As such, this paper presents for the first time how mass timber post-and-beam systems can be accurately modelled using Finite Element under edge and corner column removal ...
View more >The structural behaviour of mass timber buildings under a load bearing element removal scenario is complex. To well understand this phenomenon and ultimately develop scientifically based design guidelines against progressive collapse for this type of buildings, there is a need to develop a Finite Element model which accurately captures the non-linear response, load redistribution mechanisms (alternative load paths) and failure modes of such buildings. As such, this paper presents for the first time how mass timber post-and-beam systems can be accurately modelled using Finite Element under edge and corner column removal scenarios. The model was validated against published 2D and 3D experimental tests performed on scaled-down substructures. The non-linear structural responses of the main structural connections were experimentally quantified and inputted into the model using the component method. Results show that the model accurately replicated load redistribution mechanisms, ultimate loads, failure modes, and strain developments. The use of the model was then illustrated by running parametric studies to quantify (i) the influence of the Cross Laminated Timber (CLT) floor panels layout and (ii) one alternative load path, typically ignored in design, on the progressive collapse resistance capacity.
View less >
View more >The structural behaviour of mass timber buildings under a load bearing element removal scenario is complex. To well understand this phenomenon and ultimately develop scientifically based design guidelines against progressive collapse for this type of buildings, there is a need to develop a Finite Element model which accurately captures the non-linear response, load redistribution mechanisms (alternative load paths) and failure modes of such buildings. As such, this paper presents for the first time how mass timber post-and-beam systems can be accurately modelled using Finite Element under edge and corner column removal scenarios. The model was validated against published 2D and 3D experimental tests performed on scaled-down substructures. The non-linear structural responses of the main structural connections were experimentally quantified and inputted into the model using the component method. Results show that the model accurately replicated load redistribution mechanisms, ultimate loads, failure modes, and strain developments. The use of the model was then illustrated by running parametric studies to quantify (i) the influence of the Cross Laminated Timber (CLT) floor panels layout and (ii) one alternative load path, typically ignored in design, on the progressive collapse resistance capacity.
View less >
Journal Title
Journal of Building Engineering
Copyright Statement
© 2022 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Note
This publication has been entered as an advanced online version in Griffith Research Online.
Subject
Architecture
Building
Civil engineering