• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Novel left and right ventricular strain analysis to detect subclinical myocardial dysfunction in cardiac allograft rejection

    Author(s)
    Chamberlain, Robert
    Edwards, Natalie FA
    Scalia, Gregory M
    Chan, Jonathan
    Griffith University Author(s)
    Chan, Jonathan H.
    Edwards, Natalie
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Early detection of acute cellular rejection (ACR) by echocardiography shows potential clinical benefit as ACR remains a significant contributor to morbidity and mortality. This retrospective, longitudinal study sought to investigate the use of novel left (LV) and right ventricular (RV) strain analysis to detect biopsy proven ACR. 46 heart transplant patients (Mean age 46 ± 16 years) with biopsy proven ACR were grouped according to biopsy results: 1R-ACR (n = 36) and 2R-ACR (n = 10). Serial two-dimensional transthoracic echocardiography with strain analysis was performed. Echocardiographic parameters were serially measured: ...
    View more >
    Early detection of acute cellular rejection (ACR) by echocardiography shows potential clinical benefit as ACR remains a significant contributor to morbidity and mortality. This retrospective, longitudinal study sought to investigate the use of novel left (LV) and right ventricular (RV) strain analysis to detect biopsy proven ACR. 46 heart transplant patients (Mean age 46 ± 16 years) with biopsy proven ACR were grouped according to biopsy results: 1R-ACR (n = 36) and 2R-ACR (n = 10). Serial two-dimensional transthoracic echocardiography with strain analysis was performed. Echocardiographic parameters were serially measured: (1) rejection free period (0R-ACR); (2) pre-ACR period (pre-ACR); (3) during ACR (1R-ACR or 2R-ACR) and (4) post-ACR (Post-ACR). Significant reductions for LV Global Longitudinal Strain (LV GLS) and LV Early diastolic Strain rate (LV ESr) were observed between 0R-ACR and pre-ACR (LV GLS 0R-ACR: 17.3% vs Pre-2R ACR: 15.4%, p = 0.016; LV ESr 0R-ACR: 1.00/s vs Pre-2R ACR: 0.74/s, p = 0.007) with LV ESr demonstrating the highest sensitivity (92%) and specificity (81%) to predict ACR. LV ESr and the E/LV ESr ratio were significantly different (p = 0.0001; p = 0.016) during pre-1R ACR period vs 0R whereas LV GLS showed no significant differences for grade 1R-ACR. Diastolic mechanical dispersion showed significant increases in dispersion during ACR for the 1R-ACR group and early significant increases pre-2R ACR. Systolic and diastolic RV strain parameters showed a similar trend for both ACR groups. Systolic and diastolic strain parameters can detect myocardial dysfunction before biopsy confirmed 2R-ACR. Early diastolic strain rate parameters are most sensitive detecting subclinical myocardial dysfunction pre-ACR. Novel strain parameters are potentially useful clinical tool for prediction of early ACR in heart transplant.
    View less >
    Journal Title
    The International Journal of Cardiovascular Imaging
    DOI
    https://doi.org/10.1007/s10554-021-02486-8
    Note
    This publication has been entered as an advanced online version in Griffith Research Online.
    Subject
    Cardiovascular medicine and haematology
    Science & Technology
    Life Sciences & Biomedicine
    Cardiac & Cardiovascular Systems
    Radiology, Nuclear Medicine & Medical Imaging
    Cardiovascular System & Cardiology
    Publication URI
    http://hdl.handle.net/10072/411470
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander