• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Fast Self-Triggered MPC for Constrained Linear Systems With Additive Disturbances

    Thumbnail
    View/Open
    Yang507317-Accepted.pdf (2.142Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Dai, Li
    Cannon, Mark
    Yang, Fuwen
    Yan, Shuhao
    Griffith University Author(s)
    Yang, Fuwen
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    This article proposes a robust self-triggered model predictive control (MPC) algorithm for a class of constrained linear systems subject to bounded additive disturbances, in which the intersampling time is determined by a fast convergence self-triggered mechanism. The main idea of the self-triggered mechanism is to select a sampling interval so that a rapid decrease in the predicted costs associated with optimal predicted control inputs is guaranteed. This allows for a reduction in the required computation without compromising performance. By using a constraint tightening technique and exploring the nature of the open-loop ...
    View more >
    This article proposes a robust self-triggered model predictive control (MPC) algorithm for a class of constrained linear systems subject to bounded additive disturbances, in which the intersampling time is determined by a fast convergence self-triggered mechanism. The main idea of the self-triggered mechanism is to select a sampling interval so that a rapid decrease in the predicted costs associated with optimal predicted control inputs is guaranteed. This allows for a reduction in the required computation without compromising performance. By using a constraint tightening technique and exploring the nature of the open-loop control between sampling instants, a set of minimally conservative constraints is imposed on nominal states to ensure robust constraint satisfaction. A multistep open-loop MPC optimization problem is formulated, which ensures recursive feasibility for all possible realizations of the disturbance. The closed-loop system is guaranteed to satisfy a mean-square stability condition. To further reduce the computational load, when states reach a predetermined neighborhood of the origin, the control law of the robust self-triggered MPC algorithm switches to a self-triggered local controller. A compact set in the state space is shown to be robustly asymptotically stabilized. Numerical comparisons are provided to demonstrate the effectiveness of the proposed strategies.
    View less >
    Journal Title
    IEEE Transactions on Automatic Control
    Volume
    66
    Issue
    8
    DOI
    https://doi.org/10.1109/TAC.2020.3022734
    Copyright Statement
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Applied mathematics
    Electrical engineering
    Mechanical engineering
    Science & Technology
    Automation & Control Systems
    Engineering, Electrical & Electronic
    Publication URI
    http://hdl.handle.net/10072/411545
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander