• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • High-Efficiency Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction Enabled by a Tungsten Single Atom Catalyst with Unique Terdentate N1O2 Coordination

    Author(s)
    Zhang, Feifei
    Zhu, Yinlong
    Tang, Cheng
    Chen, Yu
    Qian, Binbin
    Hu, Zhiwei
    Chang, Yu-Chung
    Pao, Chih-Wen
    Lin, Qian
    Kazemi, Seyedeh Alieh
    Wang, Yun
    Zhang, Lian
    Zhang, Xiwang
    Wang, Huanting
    Griffith University Author(s)
    Wang, Yun
    Kazemi, Seyedeh Alieh
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Single-atom catalysts (SACs) have shown great potential in the electrochemical oxygen reduction reaction (ORR) toward hydrogen peroxide (H2O2) production. However, current studies are mainly focused on 3d transition-metal SACs, and very little attention has been paid to 5d SACs. Here, a new kind of W SAC anchored on a porous O, N-doped carbon nanosheet (W1/NO-C) is designed and prepared via a simple coordination polymer-pyrolysis method. A unique local structure of W SAC, terdentate W1N1O2 with the coordination of two O atoms and one N atom, is identified by the combination of aberration-corrected scanning transmission ...
    View more >
    Single-atom catalysts (SACs) have shown great potential in the electrochemical oxygen reduction reaction (ORR) toward hydrogen peroxide (H2O2) production. However, current studies are mainly focused on 3d transition-metal SACs, and very little attention has been paid to 5d SACs. Here, a new kind of W SAC anchored on a porous O, N-doped carbon nanosheet (W1/NO-C) is designed and prepared via a simple coordination polymer-pyrolysis method. A unique local structure of W SAC, terdentate W1N1O2 with the coordination of two O atoms and one N atom, is identified by the combination of aberration-corrected scanning transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy. Remarkably, the as-prepared W1/NO-C catalyzes the ORR via a 2e– pathway with high onset potential, high H2O2 selectivity in the wide potential range, and excellent operation durability in 0.1 m KOH solution, superior to most of state-of-the-art H2O2 electrocatalysts ever reported. Theoretical calculations reveal that the C atoms adjacent to O in the W1N1O2-C moiety are the most active sites for the 2e– ORR to H2O2 with the optimal binding energy of the HOO* intermediate. This work opens up a new opportunity for the development of high-performance W-based catalysts for electrochemical H2O2 production.
    View less >
    Journal Title
    Advanced Functional Materials
    DOI
    https://doi.org/10.1002/adfm.202110224
    Note
    This publication has been entered as an advanced online version in Griffith Research Online.
    Subject
    Physical sciences
    Chemical sciences
    Science & Technology
    Physical Sciences
    Chemistry, Multidisciplinary
    Chemistry, Physical
    Publication URI
    http://hdl.handle.net/10072/411611
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander