• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Exergoeconomic, carbon, and water footprint analyses and optimization of a new solar-driven multigeneration system based on supercritical CO2 cycle and solid oxide steam electrolyzer using various phase change materials

    Author(s)
    Hadelu, LM
    Noorpoor, A
    Boyaghchi, FA
    Mirjalili, S
    Griffith University Author(s)
    Mirjalili, Seyedali
    Year published
    2022
    Metadata
    Show full item record
    Abstract
    This study presents an innovative multigeneration for power, cooling load, distilled water, and hydrogen production from solar energy. The proposed system is comprised of a supercritical carbon dioxide (sCO2) ejector refrigeration cycle, a solar still desalination unit (SSDU), and a solid oxide steam electrolyzer (SOSE), integrated with parabolic dish collectors (PDCs) field. Exergoeconomic, carbon footprint (CF), and water footprint (WF) analyses are performed to assess the comprehensive performance of the system using seven inorganic and metal high-temperature PCMs, namely MgCl2, NaCl, LiF-MgF2, NaF-CaF2-MgF2, Zn-Cu-Mg, ...
    View more >
    This study presents an innovative multigeneration for power, cooling load, distilled water, and hydrogen production from solar energy. The proposed system is comprised of a supercritical carbon dioxide (sCO2) ejector refrigeration cycle, a solar still desalination unit (SSDU), and a solid oxide steam electrolyzer (SOSE), integrated with parabolic dish collectors (PDCs) field. Exergoeconomic, carbon footprint (CF), and water footprint (WF) analyses are performed to assess the comprehensive performance of the system using seven inorganic and metal high-temperature PCMs, namely MgCl2, NaCl, LiF-MgF2, NaF-CaF2-MgF2, Zn-Cu-Mg, Cu-Si-Mg, and Cu-Si. It is found that Cu-Si delivers superior thermodynamic performance enhancement, and NaF-CaF2-MgF2 leads to the lowest economic, carbon, and water footprint performances among the desired PCMs. Moreover, multi-objective antlion optimization (MOALO) is conducted to ascertain and compare the maximum exergy efficiency and the minimum product cost, CO2 emission, and water consumption rates of Cu-Si and NaF-CaF2-MgF2. Under optimal conditions, Cu-Si gives an exergy efficiency of 31.27% with hydrogen, net power, cooling capacity, and distilled water production of 44.56 kg/h, 1508 kW, 74.03 kW, and 15.48 kg/h, respectively, and NaF-CaF2-MgF2 yields the lowest cost, CO2 emission, and water consumption rates of 73.55 $/h, 86.338 CO2e/h, and 180.73 kg H2O/h, respectively indicating 11.01%, 5.20% and 7.88% improvements with an 8.98% decrement in exergy efficiency compared with Cu-Si.
    View less >
    Journal Title
    Process Safety and Environmental Protection
    Volume
    159
    DOI
    https://doi.org/10.1016/j.psep.2022.01.013
    Subject
    Chemical engineering
    Maritime engineering
    Resources engineering and extractive metallurgy
    Applied mathematics
    Publication URI
    http://hdl.handle.net/10072/411870
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander