• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • vTRUST: A formal modeling and verification framework for virtualization systems

    Thumbnail
    View/Open
    Bai213849-Accepted.pdf (393.7Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Hao, J
    Liu, Y
    Cai, W
    Bai, G
    Sun, J
    Griffith University Author(s)
    Bai, Guangdong
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    Virtualization is widely used for critical services like Cloud computing. It is desirable to formally verify virtualization systems. However, the complexity of the virtualization system makes the formal analysis a difficult task, e.g., sophisticated programs to manipulate low-level technologies, paged memory management, memory mapped I/O and trusted computing. In this paper, we propose a formal framework, vTRUST, to formally describe virtualization systems with a carefully designed abstraction. vTRUST includes a library to model configurable hardware components and technologies commonly used in virtualization. The system ...
    View more >
    Virtualization is widely used for critical services like Cloud computing. It is desirable to formally verify virtualization systems. However, the complexity of the virtualization system makes the formal analysis a difficult task, e.g., sophisticated programs to manipulate low-level technologies, paged memory management, memory mapped I/O and trusted computing. In this paper, we propose a formal framework, vTRUST, to formally describe virtualization systems with a carefully designed abstraction. vTRUST includes a library to model configurable hardware components and technologies commonly used in virtualization. The system designer can thus verify virtualization systems on critical properties (e.g., confidentiality, verifiability, isolation and PCR consistency) with respect to certain adversary models. We demonstrate the effectiveness of vTRUST by automatically verifying a real-world Cloud implementation with critical bugs identified.
    View less >
    Conference Title
    Lecture Notes in Computer Science
    Volume
    8144
    DOI
    https://doi.org/10.1007/978-3-642-41202-8_22
    Copyright Statement
    © Springer-Verlag Berlin Heidelberg 2013. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher.The original publication is available at www.springerlink.com
    Publication URI
    http://hdl.handle.net/10072/411922
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander