• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A facile oxygen vacancy and bandgap control of Bi(OH)SO4·H2O for achieving enhanced photocatalytic remediation

    Author(s)
    Ma, Mingguang
    Liu, Yang
    Wei, Yunxia
    Hao, Derek
    Wei, Wei
    Ni, Bing-Jie
    Griffith University Author(s)
    Hao, Derek
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    The development of highly efficient photocatalysts is crucial for the remediation of organic pollutants. Herein, we reported a facile synthesis of oxygen vacancy rich Bi(OH)SO4·H2O photocatalyst by the control of precursor. The samples were characterized by XRD, scanning electron microscope, electron paramagnetic resonance, X-ray photoelectron spectroscopy etc. With more oxygen vacancies introduced, the photocatalytic activity on the degradation of RhB and tetracycline was significantly boosted. Density functional theory calculation was used to further reveal the influence of oxygen vacancy on the band structure of Bi(OH)SO4·H2O. ...
    View more >
    The development of highly efficient photocatalysts is crucial for the remediation of organic pollutants. Herein, we reported a facile synthesis of oxygen vacancy rich Bi(OH)SO4·H2O photocatalyst by the control of precursor. The samples were characterized by XRD, scanning electron microscope, electron paramagnetic resonance, X-ray photoelectron spectroscopy etc. With more oxygen vacancies introduced, the photocatalytic activity on the degradation of RhB and tetracycline was significantly boosted. Density functional theory calculation was used to further reveal the influence of oxygen vacancy on the band structure of Bi(OH)SO4·H2O. The results and finding of this work are helpful for the development of sustainable environmental protection.
    View less >
    Journal Title
    Journal of Environmental Management
    Volume
    294
    DOI
    https://doi.org/10.1016/j.jenvman.2021.113046
    Subject
    Wastewater treatment processes
    Science & Technology
    Life Sciences & Biomedicine
    Environmental Sciences & Ecology
    Oxygen vacancy
    Publication URI
    http://hdl.handle.net/10072/412000
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander