• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Polystyrene nanoplastics reshape the anaerobic granular sludge for recovering methane from wastewater

    Author(s)
    Wei, Wei
    Hao, Qiang
    Chen, Zhijie
    Bao, Teng
    Ni, Bing-Jie
    Griffith University Author(s)
    Hao, Derek
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Wastewater has been identified as an important carrier for nanoplastics, which could elicit unintended impacts on critical microbial processes. However, the long-term impacts of nanoplastics on anaerobic granular sludge (AGS) for methane recovery from wastewater and the mechanisms involved remains unclear. In this study, we investigated the long term exposure-response relationship between polystyrene nanoplastics (Nano-PS) and AGS. In continuous test over 120 days with 86 days’ Nano-PS exposure, feeding wastewater with 10 μg/L of Nano-PS had no significant impacts on the AGS performance. In comparison, higher levels (i.e., ...
    View more >
    Wastewater has been identified as an important carrier for nanoplastics, which could elicit unintended impacts on critical microbial processes. However, the long-term impacts of nanoplastics on anaerobic granular sludge (AGS) for methane recovery from wastewater and the mechanisms involved remains unclear. In this study, we investigated the long term exposure-response relationship between polystyrene nanoplastics (Nano-PS) and AGS. In continuous test over 120 days with 86 days’ Nano-PS exposure, feeding wastewater with 10 μg/L of Nano-PS had no significant impacts on the AGS performance. In comparison, higher levels (i.e., 20 and 50 μg/L) of Nano-PS decreased methane production and chemical oxygen demand (COD) removal by 19.0–28.6% and 19.3–30.0%, respectively, along with volatile fatty acids (VFA) accumulation. More extracellular polymeric substance (EPS) was induced by 10 μg/L of Nano-PS as a response to protect microbes, but higher levels (i.e., 20 and 50 μg/L) of Nano-PS decreased EPS generation, causing a decline in granule size and cell viability. Fluorescence tagging found that a large number of Nano-PS agglomerated/accumulated on the outer layer of AGS and even transferred into deeper layers of AGS over exposure time, producing toxic effects to adherent microorganisms, e.g., Longilinea sp., Paludibacter sp. and Methanosaeta sp. The oxidative stress induced by Nano-PS was revealed to be a key factor for reshaping the AGS, reflected by the increased reactive oxygen species (ROS) generation and lactate dehydrogenase (LDH) release. The sodium dodecyl sulfate (SDS) leached from Nano-PS was also demonstrated to restrain the activities of antioxidant enzymes, thereby further lessening resistance to oxidative stress induced by Nano-PS. This work improves our ability to predict the risks associated with this ubiquitous contaminant in the environment.
    View less >
    Journal Title
    Water Research
    Volume
    182
    DOI
    https://doi.org/10.1016/j.watres.2020.116041
    Subject
    Wastewater treatment processes
    Science & Technology
    Life Sciences & Biomedicine
    Physical Sciences
    Engineering, Environmental
    Publication URI
    http://hdl.handle.net/10072/412043
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander