• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • How does synthetic musks affect methane production from the anaerobic digestion of waste activated sludge?

    Author(s)
    Wei, Wei
    Wu, Lan
    Liu, Xiaoqing
    Chen, Zhijie
    Hao, Qiang
    Wang, Dongbo
    Liu, Yiwen
    Peng, Lai
    Ni, Bing-Jie
    Griffith University Author(s)
    Hao, Derek
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    The increasing use of synthetic musks has led to a large amount of synthetic musks retaining in waste activated sludge (WAS) via wastewater treatment, thereby entering anaerobic digester. However, the potential effects of synthetic musks on WAS anaerobic digestion remain unknown. Herein, this study selected the dominant galaxolide (HHCB) in WAS as the typical synthetic musks and experimentally evaluated the long-term effects on WAS anaerobic digestion using continuous lab-scale anaerobic digesters as well as the mechanisms involved. The results demonstrated that the increased HHCB levels (i.e., 90, 150 and 200 mg/kg-dw) ...
    View more >
    The increasing use of synthetic musks has led to a large amount of synthetic musks retaining in waste activated sludge (WAS) via wastewater treatment, thereby entering anaerobic digester. However, the potential effects of synthetic musks on WAS anaerobic digestion remain unknown. Herein, this study selected the dominant galaxolide (HHCB) in WAS as the typical synthetic musks and experimentally evaluated the long-term effects on WAS anaerobic digestion using continuous lab-scale anaerobic digesters as well as the mechanisms involved. The results demonstrated that the increased HHCB levels (i.e., 90, 150 and 200 mg/kg-dw) resulted in the decreased methane production, with the methane production at 200 mg/kg-dw being only 80.5 ± 0.1% of the control. Supporting the methane production data, volatile solids (VS) destruction decreased by 18.6 ± 0.9%, which increased 6.8% of volume waste sludge for transfer and disposal. Correspondingly, the microbial community was shifted in the direction against anaerobic digestion. By modeling based on biochemical methane potential tests and investigating the key stages involved in anaerobic digestion, it was found that although the HHCB showed little impacts on the solubilization, WAS hydrolysis-acidification steps was inhibited by HHCB with the decreased hydrolysis rate and methane production potential, thereby causing the deteriorated performance of WAS anaerobic digestion.
    View less >
    Journal Title
    Science of The Total Environment
    Volume
    713
    DOI
    https://doi.org/10.1016/j.scitotenv.2020.136594
    Subject
    Wastewater treatment processes
    Science & Technology
    Life Sciences & Biomedicine
    Environmental Sciences & Ecology
    Anaerobic digestion
    Publication URI
    http://hdl.handle.net/10072/412057
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander