Preparation of BiPO4/graphene photoelectrode and its photoelectrocatalyitic performance
Author(s)
He, Zetian
Liu, Sen
Zhong, Yi
Chen, Daimei
Ding, Hao
Wang, Jiao
Du, Gaoxiang
Yang, Guang
Hao, Qiang
Griffith University Author(s)
Year published
2020
Metadata
Show full item recordAbstract
In this work, a two-step electrodeposition method was employed to prepare BiPO4 nanorod/reduced graphene oxide/FTO composite electrodes (BiPO4/rGO/FTO). The BiPO4/rGO/FTO composite electrode showed the higher photoelectrocatalytic (PEC) activity for the removal of methyl orange than pure BiPO4, which was 2.8 times higher than that of BiPO4/FTO electrode. The effects of working voltage and BiPO4 deposition time on the degradation efficiency of methyl orange were investigated. The optimum BiPO4 deposition time was 45 min and the optimum working voltage was 1.2 V. The trapping experiments showed that hydroxyl radicals (•OH) and ...
View more >In this work, a two-step electrodeposition method was employed to prepare BiPO4 nanorod/reduced graphene oxide/FTO composite electrodes (BiPO4/rGO/FTO). The BiPO4/rGO/FTO composite electrode showed the higher photoelectrocatalytic (PEC) activity for the removal of methyl orange than pure BiPO4, which was 2.8 times higher than that of BiPO4/FTO electrode. The effects of working voltage and BiPO4 deposition time on the degradation efficiency of methyl orange were investigated. The optimum BiPO4 deposition time was 45 min and the optimum working voltage was 1.2 V. The trapping experiments showed that hydroxyl radicals (•OH) and superoxide radicals (•O2) were the major reactive species in PEC degradation process. The BiPO4/rGO/FTO composite electrode showed the high stability and its methyl orange removal efficiency remained unchanged after four testing cycles. The reasons for the enhanced PEC efficiency of the BiPO4/rGO/FTO composite electrode was ascribed to the broad visible-light absorption range, the rapid transmission of photogenerated charges, and the mixed BiPO4 phase by the introduction of rGO in the composite electrode films.
View less >
View more >In this work, a two-step electrodeposition method was employed to prepare BiPO4 nanorod/reduced graphene oxide/FTO composite electrodes (BiPO4/rGO/FTO). The BiPO4/rGO/FTO composite electrode showed the higher photoelectrocatalytic (PEC) activity for the removal of methyl orange than pure BiPO4, which was 2.8 times higher than that of BiPO4/FTO electrode. The effects of working voltage and BiPO4 deposition time on the degradation efficiency of methyl orange were investigated. The optimum BiPO4 deposition time was 45 min and the optimum working voltage was 1.2 V. The trapping experiments showed that hydroxyl radicals (•OH) and superoxide radicals (•O2) were the major reactive species in PEC degradation process. The BiPO4/rGO/FTO composite electrode showed the high stability and its methyl orange removal efficiency remained unchanged after four testing cycles. The reasons for the enhanced PEC efficiency of the BiPO4/rGO/FTO composite electrode was ascribed to the broad visible-light absorption range, the rapid transmission of photogenerated charges, and the mixed BiPO4 phase by the introduction of rGO in the composite electrode films.
View less >
Journal Title
Chinese Journal of Catalysis
Volume
41
Issue
2
Subject
Physical chemistry
Science & Technology
Physical Sciences
Chemistry, Applied
Chemistry, Physical