• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Construction of urchin-like ZnIn2S4-Au-TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution

    Author(s)
    Yang, Guang
    Ding, Hao
    Chen, Daimei
    Feng, Jiejie
    Hao, Qiang
    Zhu, Yongfa
    Griffith University Author(s)
    Hao, Derek
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    The ternary ZnIn2S4-Au-TiO2 Z-scheme heterostructure photocatalysts has been fabricated by selecting effectiveness Au NPs as a solid electron mediator, via a chemical-deposition process for water splitting under simulated solar light irradiation. The designed photocatalysts exhibit high surface area and wide light absorption range, which significantly enhance photocatalytic efficiency. At an optimal ratio of 24 wt% Au NPs and 60 wt% ZnIn2S4, the obtained ZnIn2S4-Au-TiO2 photocatalysts achieve the highest H2 production with the rate of 186.3 μmol g−1 h−1, and the O2 production rate is reached to 66.3 μmol g−1 h−1. It showed ...
    View more >
    The ternary ZnIn2S4-Au-TiO2 Z-scheme heterostructure photocatalysts has been fabricated by selecting effectiveness Au NPs as a solid electron mediator, via a chemical-deposition process for water splitting under simulated solar light irradiation. The designed photocatalysts exhibit high surface area and wide light absorption range, which significantly enhance photocatalytic efficiency. At an optimal ratio of 24 wt% Au NPs and 60 wt% ZnIn2S4, the obtained ZnIn2S4-Au-TiO2 photocatalysts achieve the highest H2 production with the rate of 186.3 μmol g−1 h−1, and the O2 production rate is reached to 66.3 μmol g−1 h−1. It showed that the ZnIn2S4-Au-TiO2 composite structures exhibit significantly better photocatalytic activity than ZnIn2S4-TiO2 and Au-ZnIn2S4-TiO2 structure. Such an excellent performance should be attributed to the Au NPs in the Z-scheme system structure which favor to enhance the transfer rate of the photogenerated electrons and holes and remain strong redox ability of the photocatalysts. It is worth pointing out that the unique Z-scheme ZnIn2S4-Au-TiO2 heterostructure shows great solar activity toward water splitting into renewable hydrocarbon fuel.
    View less >
    Journal Title
    Applied Catalysis B: Environmental
    Volume
    234
    DOI
    https://doi.org/10.1016/j.apcatb.2018.04.038
    Subject
    Physical chemistry
    Chemical engineering
    Environmental engineering
    Science & Technology
    Physical Sciences
    Chemistry, Physical
    Engineering, Environmental
    Publication URI
    http://hdl.handle.net/10072/412064
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander