• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A separation-free polyacrylamide/bentonite/graphitic carbon nitride hydrogel with excellent performance in water treatment

    Author(s)
    Hao, Qiang
    Chen, Tong
    Wang, Ruiting
    Feng, Jianrui
    Chen, Daimei
    Yao, Wenqing
    Griffith University Author(s)
    Hao, Derek
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    3D-hydrogels have broad potential for wastewater treatment, for they are separation-free and have excellent adsorption capacity. However, the process of adsorption is only the enrichment of pollutants rather than elimination. Development of 3D-hydrogel/photocatalyst composite materials is a promising strategy for achieving the enrichment and mineralization of organic pollutants. This paper describes a facile and environmentally friendly synthesis of separation-free polyacrylamide/bentonite/graphitic carbon nitride 3D-hydrogel. When the mass of graphitic carbon nitride is 1/10 of acrylamide, the composite hydrogel displays ...
    View more >
    3D-hydrogels have broad potential for wastewater treatment, for they are separation-free and have excellent adsorption capacity. However, the process of adsorption is only the enrichment of pollutants rather than elimination. Development of 3D-hydrogel/photocatalyst composite materials is a promising strategy for achieving the enrichment and mineralization of organic pollutants. This paper describes a facile and environmentally friendly synthesis of separation-free polyacrylamide/bentonite/graphitic carbon nitride 3D-hydrogel. When the mass of graphitic carbon nitride is 1/10 of acrylamide, the composite hydrogel displays excellent removal of tetracycline in both static and flowing state. The total removal efficiency is higher than that of adsorption or degradation. The enhanced removal of organic pollutants is attributed to the synergistic effect of adsorption and photocatalytic degradation, the enhanced light absorption and the accelerated separation of photogenerated charge carriers. More importantly, it has excellent stability and can be easily separated from water and reused. This 3D-hydrogel/photocatalyst composite materials has broad application potential to the elimination of organic pollutants in water.
    View less >
    Journal Title
    Journal of Cleaner Production
    Volume
    197
    DOI
    https://doi.org/10.1016/j.jclepro.2018.06.289
    Subject
    Environmental engineering
    Manufacturing engineering
    Science & Technology
    Life Sciences & Biomedicine
    Green & Sustainable Science & Technology
    Engineering, Environmental
    Publication URI
    http://hdl.handle.net/10072/412068
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander