• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Highly Performance Core-Shell TiO2(B)/anatase Homojunction Nanobelts with Active Cobalt phosphide Cocatalyst for Hydrogen Production

    Thumbnail
    View/Open
    Hao522116-Published.pdf (1.964Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Yang, Guang
    Ding, Hao
    Feng, Jiejie
    Hao, Qiang
    Sun, Sijia
    Ao, Weihua
    Chen, Daimei
    Griffith University Author(s)
    Hao, Derek
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    In this paper, a highly efficient core-shell structure of TiO2(B)/anatase photocatalyst with CoP cocatalyst has been synthesized via hydrothermal processes and a mechanical milling method. The designed core-shell TiO2(B)/anatase photocatalysts exhibit excellent performance by compared with pure TiO2(B) and anatase phase. With the participation of CoP particles, there is drastically enhanced photocatalytic activity of TiO2(B)/anatase, and the H2-production rate can be up to 7400 μmol·g-1, which is about 3.2 times higher than TiO2(B)/anatase photocatalyst. The improved activity is attributed to the contribution of the well-matched ...
    View more >
    In this paper, a highly efficient core-shell structure of TiO2(B)/anatase photocatalyst with CoP cocatalyst has been synthesized via hydrothermal processes and a mechanical milling method. The designed core-shell TiO2(B)/anatase photocatalysts exhibit excellent performance by compared with pure TiO2(B) and anatase phase. With the participation of CoP particles, there is drastically enhanced photocatalytic activity of TiO2(B)/anatase, and the H2-production rate can be up to 7400 μmol·g-1, which is about 3.2 times higher than TiO2(B)/anatase photocatalyst. The improved activity is attributed to the contribution of the well-matched core-shell structure and cooperative effect of CoP cocatalyst. The photogenerated holes of anatase can migrate more promptly to the adjacent TiO2(B) core than the photogenerated electrons, which result in an accumulation of electrons in the anatase, and CoP nanoparticles can contribute significantly to transferring electrons from the surface of TiO2(A). It was found that the efficient separation of electron-hole pairs greatly improved the photocatalytic hydrogen evolution in water under UV light irradiation.
    View less >
    Journal Title
    Scientific Reports
    Volume
    7
    Issue
    1
    DOI
    https://doi.org/10.1038/s41598-017-15134-w
    Copyright Statement
    © The Author(s) 2017. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
    Subject
    Catalysis and mechanisms of reactions
    Science & Technology
    Multidisciplinary Sciences
    Science & Technology - Other Topics
    H-2 PRODUCTION ACTIVITY
    REDUCED GRAPHENE OXIDE
    Publication URI
    http://hdl.handle.net/10072/412071
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander