• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Enhanced photochemical oxidation ability of carbon nitride by π–π stacking interactions with graphene

    Author(s)
    Hao, Qiang
    Hao, Simeng
    Niu, Xiuxiu
    Li, Xun
    Chen, Daimei
    Ding, Hao
    Griffith University Author(s)
    Hao, Derek
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    A one-pot method for the preparation of g-C3N4/reduced graphene oxide (rGO) composite photocatalysts with controllable band structures is presented. The photocatalysts are characterized by Fouirer transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, transmission electron microscope, and Mott-Schottky analysis. The valance band (VB) of g-C3N4 exhibits a noticeable positive shift upon hybridizing with rGO, and thus results in a strong photo-oxidation ability. The g-C3N4/rGO composites show a higher photodegradation activity for 2,4-dichlorophenol (2,4-DCP) and rhodamine B (RhB) under visible light ...
    View more >
    A one-pot method for the preparation of g-C3N4/reduced graphene oxide (rGO) composite photocatalysts with controllable band structures is presented. The photocatalysts are characterized by Fouirer transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, transmission electron microscope, and Mott-Schottky analysis. The valance band (VB) of g-C3N4 exhibits a noticeable positive shift upon hybridizing with rGO, and thus results in a strong photo-oxidation ability. The g-C3N4/rGO composites show a higher photodegradation activity for 2,4-dichlorophenol (2,4-DCP) and rhodamine B (RhB) under visible light irradiation (λ≥420 nm). The g-C3N4/rGO-1 sample exhibits the highest photocatalytic activity, which is 1.49 and 1.52 times higher than that of bulk g-C3N4 for 2,4-DCP and 1.52 times degradation, respectively. The enhanced photocatalytic activity for g-C3N4 originates from the improved visible light usage, enhanced electronic conductivity and photo-oxidation ability by the formed strong π-π stacking interactions with rGO.
    View less >
    Journal Title
    Chinese Journal of Catalysis
    Volume
    38
    Issue
    2
    DOI
    https://doi.org/10.1016/S1872-2067(16)62561-5
    Subject
    Nanochemistry
    Science & Technology
    Physical Sciences
    Chemistry, Applied
    Chemistry, Physical
    Publication URI
    http://hdl.handle.net/10072/412072
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander