• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A Pilot Study to Non-Invasively Track PIK3CA Mutation in Head and Neck Cancer

    Thumbnail
    View/Open
    Punyadeera521833-Published.pdf (369.0Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Schmidt, Henri
    Kulasinghe, Arutha
    Allcock, Richard JN
    Tan, Lit Yeen
    Mokany, Elisa
    Kenny, Liz
    Punyadeera, Chamindie
    Griffith University Author(s)
    Punyadeera, Chamindie
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    BACKGROUND: PIK3CA pathways are the most frequently mutated oncogenic pathway in head and neck squamous cell carcinoma (HNSCC), including virally driven HNCs. PIK3CA is involved in the PI3K-PTEN-mTOR signalling pathway. PIK3CA has been implicated in HNSCC progression and PIK3CA mutations may serve as predictive biomarkers for therapy selection. Circulating tumour DNA (ctDNA) derived from necrotic and apoptotic tumour cells are thought to harbour tumour-specific genetic alterations. As such, the detection of PIK3CA alterations detected by ctDNA holds promise as a potential biomarker in HNSCC. METHODS: Blood samples from ...
    View more >
    BACKGROUND: PIK3CA pathways are the most frequently mutated oncogenic pathway in head and neck squamous cell carcinoma (HNSCC), including virally driven HNCs. PIK3CA is involved in the PI3K-PTEN-mTOR signalling pathway. PIK3CA has been implicated in HNSCC progression and PIK3CA mutations may serve as predictive biomarkers for therapy selection. Circulating tumour DNA (ctDNA) derived from necrotic and apoptotic tumour cells are thought to harbour tumour-specific genetic alterations. As such, the detection of PIK3CA alterations detected by ctDNA holds promise as a potential biomarker in HNSCC. METHODS: Blood samples from treatment naïve HNSCC patients (n = 29) were interrogated for a commonly mutated PIK3CA hotspot mutation using low cost allele-specific Plex-PCRTM technology. RESULTS: In this pilot, cross sectional study, PIK3CA E545K mutation was detected in the plasma samples of 9/29 HNSCC patients using the Plex-PCRTM technology. CONCLUSION: The results of this pilot study support the notion of using allele-specific technologies for cost-effective testing of ctDNA, and further assert the potential utility of ctDNA in HNSCC.
    View less >
    Journal Title
    Diagnostics
    Volume
    8
    Issue
    4
    DOI
    https://doi.org/10.3390/diagnostics8040079
    Copyright Statement
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Oncology and carcinogenesis
    Science & Technology
    Life Sciences & Biomedicine
    Medicine, General & Internal
    General & Internal Medicine
    circulating tumour (ctDNA)
    Publication URI
    http://hdl.handle.net/10072/412084
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander