• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effects of binder types and other significant variables on the unconfined compressive strength of chemical-stabilized clayey soil using gene-expression programming

    Thumbnail
    View/Open
    Pham795063-Published.pdf (791.7Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Pham, Van-Ngoc
    Oh, Erwin
    Ong, Dominic EL
    Griffith University Author(s)
    Ong, Dominic E.L.
    Oh, Erwin
    Year published
    2022
    Metadata
    Show full item record
    Abstract
    Soil stabilization is an in situ soil treatment in which soils are mixed with cementitious or other chemical stabilizing agents. Determining the unconfined compressive strength (UCS) of stabilized soil is a principal task in the design and construction of the ground improvement. Hence, this study aims to develop a reliable predictive model for the UCS of clay stabilization with common cementitious binders using the gene-expression programming (GEP) technique. Eleven parameters, including the soil characteristics, the binder types, the binder contents, the mixing method, and the curing period, were considered as the independent ...
    View more >
    Soil stabilization is an in situ soil treatment in which soils are mixed with cementitious or other chemical stabilizing agents. Determining the unconfined compressive strength (UCS) of stabilized soil is a principal task in the design and construction of the ground improvement. Hence, this study aims to develop a reliable predictive model for the UCS of clay stabilization with common cementitious binders using the gene-expression programming (GEP) technique. Eleven parameters, including the soil characteristics, the binder types, the binder contents, the mixing method, and the curing period, were considered as the independent variables in the model. The research results show that the selected optimal GEP-based model performs well with an acceptable correlation coefficient (R = 0.951) and low errors (e.g., RMSE and MAE). Besides, parametric analyses indicate that the plastic index, the percentage of clay, and the total water content have a negative effect on the UCS of stabilized soil. In contrast, the percentage of silt and sand, the binder types, the binder contents, and the curing time show a positive effect on the strength of stabilized soil. In addition, the strength of stabilized clay could be significantly enhanced by combining cement with slag, lime, or fly ash with a reasonable ratio, or by reducing the natural water content in the soil. The research findings could help engineers choose suitable binder types and cost-effective methods to optimize the UCS of stabilized clay.
    View less >
    Journal Title
    Neural Computing and Applications
    DOI
    https://doi.org/10.1007/s00521-022-06931-0
    Copyright Statement
    © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
    Note
    This publication has been entered as an advanced online version in Griffith Research Online.
    Subject
    Cognitive and computational psychology
    Science & Technology
    Computer Science, Artificial Intelligence
    Clay stabilization
    Publication URI
    http://hdl.handle.net/10072/412171
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander