• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Prediction of mean wave overtopping at simple sloped breakwaters using kernel-based methods

    Thumbnail
    View/Open
    Etemad Shahidi509776-Published.pdf (1008.Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Hosseinzadeh, Shabnam
    Etemad-Shahidi, Amir
    Koosheh, Ali
    Griffith University Author(s)
    Etemad Shahidi, Amir F.
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    The accurate prediction of the mean wave overtopping rate at breakwaters is vital for a safe design. Hence, providing a robust tool as a preliminary estimator can be useful for practitioners. Recently, soft computing tools such as artificial neural networks (ANN) have been developed as alternatives to traditional overtopping formulae. The goal of this paper is to assess the capabilities of two kernel-based methods, namely Gaussian process regression (GPR) and support vector regression for the prediction of mean wave overtopping rate at sloped breakwaters. An extensive dataset taken from the EurOtop database, including rubble ...
    View more >
    The accurate prediction of the mean wave overtopping rate at breakwaters is vital for a safe design. Hence, providing a robust tool as a preliminary estimator can be useful for practitioners. Recently, soft computing tools such as artificial neural networks (ANN) have been developed as alternatives to traditional overtopping formulae. The goal of this paper is to assess the capabilities of two kernel-based methods, namely Gaussian process regression (GPR) and support vector regression for the prediction of mean wave overtopping rate at sloped breakwaters. An extensive dataset taken from the EurOtop database, including rubble mound structures with permeable core, straight slopes, without berm, and crown wall, was employed to develop the models. Different combinations of the important dimensionless parameters representing structural features and wave conditions were tested based on the sensitivity analysis for developing the models. The obtained results were compared with those of the ANN model and the existing empirical formulae. The modified Taylor diagram was used to compare the models graphically. The results showed the superiority of kernel-based models, especially the GPR model over the ANN model and empirical formulae. In addition, the optimal input combination was introduced based on accuracy and the number of input parameters criteria. Finally, the physical consistencies of developed models were investigated, the results of which demonstrated the reliability of kernel-based models in terms of delivering physics of overtopping phenomenon.
    View less >
    Journal Title
    Journal of Hydroinformatics
    Volume
    23
    Issue
    5
    DOI
    https://doi.org/10.2166/hydro.2021.046
    Copyright Statement
    © 2021 The Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
    Subject
    Civil engineering
    Ocean engineering
    Science & Technology
    Life Sciences & Biomedicine
    Physical Sciences
    Computer Science, Interdisciplinary Applications
    Publication URI
    http://hdl.handle.net/10072/412174
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander