Graph-based seed object synthesis for search-based unit testing
Author(s)
Lin, Y
Ong, YS
Sun, J
Fraser, G
Dong, JS
Griffith University Author(s)
Year published
2021
Metadata
Show full item recordAbstract
Search-based software testing (SBST) generates tests using search algorithms guided by measurements gauging how far a test case is away from exercising a coverage goal. The effectiveness of SBST largely depends on the continuity and monotonicity of the fitness landscape decided by these measurements and the search operators. Unfortunately, the fitness landscape is challenging when the function under test takes object inputs, as classical measurement hardly provide guidance for constructing legitimate object inputs. To overcome this problem, we propose test seeds, i.e., test code skeletons of legitimate objects which enable ...
View more >Search-based software testing (SBST) generates tests using search algorithms guided by measurements gauging how far a test case is away from exercising a coverage goal. The effectiveness of SBST largely depends on the continuity and monotonicity of the fitness landscape decided by these measurements and the search operators. Unfortunately, the fitness landscape is challenging when the function under test takes object inputs, as classical measurement hardly provide guidance for constructing legitimate object inputs. To overcome this problem, we propose test seeds, i.e., test code skeletons of legitimate objects which enable the use of classical measurements. Given a target branch in a function under test, we first statically analyze the function to build an object construction graph that captures the relation between the operands of the target method and the states of their relevant object inputs. Based on the graph, we synthesize test template code where each "slot"is a mutation point for the search algorithm. This approach can be seamlessly integrated with existing SBST algorithms, and we implemented EvoObj on top of EvoSuite. Our experiments show that EvoObj outperforms EvoSuite with statistical significance on 2750 methods over 103 open source Java projects using state-of-the-art SBST algorithms.
View less >
View more >Search-based software testing (SBST) generates tests using search algorithms guided by measurements gauging how far a test case is away from exercising a coverage goal. The effectiveness of SBST largely depends on the continuity and monotonicity of the fitness landscape decided by these measurements and the search operators. Unfortunately, the fitness landscape is challenging when the function under test takes object inputs, as classical measurement hardly provide guidance for constructing legitimate object inputs. To overcome this problem, we propose test seeds, i.e., test code skeletons of legitimate objects which enable the use of classical measurements. Given a target branch in a function under test, we first statically analyze the function to build an object construction graph that captures the relation between the operands of the target method and the states of their relevant object inputs. Based on the graph, we synthesize test template code where each "slot"is a mutation point for the search algorithm. This approach can be seamlessly integrated with existing SBST algorithms, and we implemented EvoObj on top of EvoSuite. Our experiments show that EvoObj outperforms EvoSuite with statistical significance on 2750 methods over 103 open source Java projects using state-of-the-art SBST algorithms.
View less >
Conference Title
ESEC/FSE 2021 - Proceedings of the 29th ACM Joint Meeting European Software Engineering Conference and Symposium on the Foundations of Software Engineering
Subject
Software engineering