• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Dissociating the effects of oxygen pressure and content on the control of breathing and acute hypoxic response

    Author(s)
    Dominelli, PB
    Baker, SE
    Wiggins, CC
    Stewart, GM
    Sajgalik, P
    Shepherd, JRA
    Roberts, SK
    Roy, TK
    Curry, TB
    Hoyer, JD
    Oliveira, JL
    Foster, GE
    Joyner, MJ
    Griffith University Author(s)
    Stewart, Glenn
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Arterial oxygen tension and oxyhemoglobin saturation (SaO2 ) decrease in parallel during hypoxia. Distinguishing between changes in oxygen tension and oxygen content as the relevant physiological stimulus for cardiorespiratory alterations remains challenging. To overcome this, we recruited nine individuals with hemoglobinopathy manifesting as highaffinity hemoglobin [HAH; partial pressure at 50% SaO2 (P50) = 16 ± 0.4 mmHg] causing greater SaO2 at a given oxygen partial pressure compared with control subjects (n = 12, P50 = 26 ± 0.4 mmHg). We assessed ventilatory and cardiovascular responses to acute isocapnic hypoxia, iso-oxic ...
    View more >
    Arterial oxygen tension and oxyhemoglobin saturation (SaO2 ) decrease in parallel during hypoxia. Distinguishing between changes in oxygen tension and oxygen content as the relevant physiological stimulus for cardiorespiratory alterations remains challenging. To overcome this, we recruited nine individuals with hemoglobinopathy manifesting as highaffinity hemoglobin [HAH; partial pressure at 50% SaO2 (P50) = 16 ± 0.4 mmHg] causing greater SaO2 at a given oxygen partial pressure compared with control subjects (n = 12, P50 = 26 ± 0.4 mmHg). We assessed ventilatory and cardiovascular responses to acute isocapnic hypoxia, iso-oxic hypercapnia, and 20 min of isocapnic hypoxia (arterial PO2 = 50 mmHg). Blood gas alterations were achieved with dynamic end-tidal forcing. When expressed as a function of the logarithm of oxygen partial pressure, ventilatory sensitivity to hypoxia was not different between groups. However, there was a significant difference when expressed as a function of SaO2 . Conversely, the rise in heart rate was blunted in HAH subjects when expressed as a function of partial pressure but similar when expressed as a function of SaO2. Ventilatory sensitivity to hypercapnia was not different between groups. During sustained isocapnic hypoxia, the rise in minute ventilation was similar between groups; however, heart rate was significantly greater in the controls during 3 to 9 min of exposure. Our results support the notion that oxygen tension, not content, alters cellular PO2 in the chemosensors and drives the hypoxic ventilatory response. Our study suggests that in addition to oxygen partial pressure, oxygen content may also influence the heart rate response to hypoxia. NEW & NOTEWORTHY We dissociated the effects of oxygen content and pressure of cardiorespiratory regulation studying individuals with high-affinity hemoglobin (HAH). During hypoxia, the ventilatory response, expressed as a function of oxygen tension, was similar between HAH variants and controls; however, the rise in heart rate was blunted in the variants. Our work supports the notion that the hypoxic ventilatory response is regulated by oxygen tension, whereas cardiovascular regulation may be influenced by arterial oxygen content and tension.
    View less >
    Journal Title
    Journal of Applied Physiology
    Volume
    127
    Issue
    6
    DOI
    https://doi.org/10.1152/japplphysiol.00569.2019
    Subject
    Medical physiology
    heart rate
    high-affinity hemoglobin
    ventilation
    Publication URI
    http://hdl.handle.net/10072/412292
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander