• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Local joint flexibility of multi-planar tubular TT-joints: Study of geometrical effects and the formulation for offshore design practice

    Author(s)
    Ahmadi, H
    Janfeshan, NM
    Griffith University Author(s)
    Ahmadi, Hamid
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Results of a parametric investigation carried out on the local joint flexibility (LJF) of multi-planar tubular TT-joints, also called two-planar DT-joints, are presented and discussed in this paper. A set of finite element (FE) analyses were conducted on 81 FE models subjected to two types of axial loading in order to study the effects of geometrical properties of the DT-joint on the LJF factor (fLJF). Developed FE models were validated using available experimental data and parametric equations. Results indicated that the increase of the γ leads to the increase of the fLJF; while the increase of the β and/or the τ leads to ...
    View more >
    Results of a parametric investigation carried out on the local joint flexibility (LJF) of multi-planar tubular TT-joints, also called two-planar DT-joints, are presented and discussed in this paper. A set of finite element (FE) analyses were conducted on 81 FE models subjected to two types of axial loading in order to study the effects of geometrical properties of the DT-joint on the LJF factor (fLJF). Developed FE models were validated using available experimental data and parametric equations. Results indicated that the increase of the γ leads to the increase of the fLJF; while the increase of the β and/or the τ leads to the decrease of the fLJF. In joints with bigger values of the γ, the increase of the β results in more drastic decrease of the fLJF. The amount of the fLJF change due to the increase of the parameter τ is much smaller compared to the other geometrical parameters. The fLJF values in two-planar DT- and uniplanar T-joints were compared. Results showed that the multi-planarity effect on the LJF is considerable and consequently the application of the equations already available for uniplanar T-joints to calculate the fLJF in two-planar DT-joints may result in highly over- or under-predicting results. To tackle this problem, FE results were used to derive a new parametric equation for the prediction of the fLJF in axially loaded two-planar DT-joints and the developed formula was checked against the UK DoE acceptance criteria.
    View less >
    Journal Title
    Applied Ocean Research
    Volume
    113
    DOI
    https://doi.org/10.1016/j.apor.2021.102758
    Subject
    Civil engineering
    Physical oceanography
    Resources engineering and extractive metallurgy
    Publication URI
    http://hdl.handle.net/10072/412458
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander