• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Deep feature loss to denoise OCT images using deep neural networks

    Thumbnail
    View/Open
    Alonso-Caneiro958643-Published.pdf (5.117Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Mehdizadeh, M
    Macnish, C
    Xiao, D
    Alonso-Caneiro, D
    Kugelman, J
    Bennamoun, M
    Griffith University Author(s)
    Alonso-Caneiro, David
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Significance: Speckle noise is an inherent limitation of optical coherence tomography (OCT) images that makes clinical interpretation challenging. The recent emergence of deep learning could offer a reliable method to reduce noise in OCT images. Aim: We sought to investigate the use of deep features (VGG) to limit the effect of blurriness and increase perceptual sharpness and to evaluate its impact on the performance of OCT image denoising (DnCNN). Approach: Fifty-one macula-centered OCT pairs were used in training of the network. Another set of 20 OCT pair was used for testing. The DnCNN model was cascaded with a VGG network ...
    View more >
    Significance: Speckle noise is an inherent limitation of optical coherence tomography (OCT) images that makes clinical interpretation challenging. The recent emergence of deep learning could offer a reliable method to reduce noise in OCT images. Aim: We sought to investigate the use of deep features (VGG) to limit the effect of blurriness and increase perceptual sharpness and to evaluate its impact on the performance of OCT image denoising (DnCNN). Approach: Fifty-one macula-centered OCT pairs were used in training of the network. Another set of 20 OCT pair was used for testing. The DnCNN model was cascaded with a VGG network that acted as a perceptual loss function instead of the traditional losses of L1 and L2. The VGG network remains fixed during the training process. We focused on the individual layers of the VGG-16 network to decipher the contribution of each distinctive layer as a loss function to produce denoised OCT images that were perceptually sharp and that preserved the faint features (retinal layer boundaries) essential for interpretation. The peak signal-to-noise ratio (PSNR), edge-preserving index, and no-reference image sharpness/blurriness [perceptual sharpness index (PSI), just noticeable blur (JNB), and spectral and spatial sharpness measure (S3)] metrics were used to compare deep feature losses with the traditional losses. Results: The deep feature loss produced images with high perceptual sharpness measures at the cost of less smoothness (PSNR) in OCT images. The deep feature loss outperformed the traditional losses (L1 and L2) for all of the evaluation metrics except for PSNR. The PSI, S3, and JNB estimates of deep feature loss performance were 0.31, 0.30, and 16.53, respectively. For L1 and L2 losses performance, the PSI, S3, and JNB were 0.21 and 0.21, 0.17 and 0.16, and 14.46 and 14.34, respectively. Conclusions: We demonstrate the potential of deep feature loss in denoising OCT images. Our preliminary findings suggest research directions for further investigation.
    View less >
    Journal Title
    Journal of Biomedical Optics
    Volume
    26
    Issue
    4
    DOI
    https://doi.org/10.1117/1.JBO.26.4.046003
    Copyright Statement
    © 2021 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
    Subject
    Biomedical engineering
    convolutional neural networks
    image enhancement
    image processing
    optical coherence tomography
    speckle
    Publication URI
    http://hdl.handle.net/10072/412502
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander