• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Static strength of axially loaded tubular KT-joints at elevated temperatures: Study of geometrical effects and parametric formulation

    Author(s)
    Azari Dodaran, N
    Ahmadi, H
    Lotfollahi-Yaghin, MA
    Griffith University Author(s)
    Ahmadi, Hamid
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    This paper aims to study the structural behavior of tubular KT-joints subjected to axial loading at fire induced elevated temperatures. At first, a finite element (FE) model was developed and validated against the data available from experimental tests. Then, a set of 810 FE analyses were performed to study the influence of temperature and dimensionless geometrical parameters (β γ θ and τ) on the ultimate strength and initial stiffness. The joints were analyzed under two types of axial loading and five different temperatures (20 °C, 200 °C, 400 °C, 550 °C, and 700 °C). Up to now, there has not been any design formula available ...
    View more >
    This paper aims to study the structural behavior of tubular KT-joints subjected to axial loading at fire induced elevated temperatures. At first, a finite element (FE) model was developed and validated against the data available from experimental tests. Then, a set of 810 FE analyses were performed to study the influence of temperature and dimensionless geometrical parameters (β γ θ and τ) on the ultimate strength and initial stiffness. The joints were analyzed under two types of axial loading and five different temperatures (20 °C, 200 °C, 400 °C, 550 °C, and 700 °C). Up to now, there has not been any design formula available for determining the ultimate strength of KT-joints at elevated temperatures. Hence, after parametric study, a new equation was developed through nonlinear regression analyses, for calculating the ultimate strength of KT-joints subjected to axial loading at elevated temperatures.
    View less >
    Journal Title
    Marine Structures
    Volume
    61
    DOI
    https://doi.org/10.1016/j.marstruc.2018.06.009
    Subject
    Civil engineering
    Maritime engineering
    Publication URI
    http://hdl.handle.net/10072/412614
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander