• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A study on the Local Joint Flexibility (LJF) of two-planar tubular DK-joints in jacket structures under in-plane bending loads

    Author(s)
    Ahmadi, H
    Ziaei Nejad, A
    Griffith University Author(s)
    Ahmadi, Hamid
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    In the present paper, results of a parametric study conducted on the Local Joint Flexibility (LJF) of two-planar tubular DK-joints under In-Plane Bending (IPB) loads are presented. DK-joints are among the most common joint types in jacket substructure of Offshore Wind Turbines (OWTs). A total of 324 finite element (FE) analyses were carried out on 81 FE models under four types of IPB loading in order to investigate the effect of the DK-joint's geometrical parameters on the LJF factor (fLJF). Based on the results of parametric study, the factors leading to the LJF reduction were introduced. Generated FE models were verified ...
    View more >
    In the present paper, results of a parametric study conducted on the Local Joint Flexibility (LJF) of two-planar tubular DK-joints under In-Plane Bending (IPB) loads are presented. DK-joints are among the most common joint types in jacket substructure of Offshore Wind Turbines (OWTs). A total of 324 finite element (FE) analyses were carried out on 81 FE models under four types of IPB loading in order to investigate the effect of the DK-joint's geometrical parameters on the LJF factor (fLJF). Based on the results of parametric study, the factors leading to the LJF reduction were introduced. Generated FE models were verified using the existing experimental data, FE results, and parametric equations. The effect of the weld profile was also considered. The fLJF in two-planar DK- and uniplanar K-joints were compared. Results indicated that the effect of multi-planarity on the LJF is quite significant and consequently the use of the equations already available for uniplanar K-joints to calculate the fLJF in two-planar DK-joints may lead to highly under-/over-predicting results. To handle this issue, the FE results were used to derive a set of parametric equations for the prediction of the fLJF in IPB-loaded two-planar DK-joints. The proposed equations were checked against the acceptance criteria recommended by the UK DoE and can be reliably used for the analysis and design of tubular joints in OWTs.
    View less >
    Journal Title
    Applied Ocean Research
    Volume
    64
    DOI
    https://doi.org/10.1016/j.apor.2017.02.002
    Subject
    Oceanography
    Civil engineering
    Resources engineering and extractive metallurgy
    Publication URI
    http://hdl.handle.net/10072/412620
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander