• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • HeartWare HVAD Flow Estimator Accuracy for Left and Right Ventricular Support

    Author(s)
    Stephens, Andrew F
    Mapley, Martin
    Wu, Eric L
    Fraser, John F
    Steinseifer, Ulrich
    Bartnikowski, Nicole
    Gregory, Shaun D
    Griffith University Author(s)
    Fraser, John F.
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    This study investigated the accuracy of the HeartWare HVAD flow estimator for left ventricular assist device (LVAD) support and biventricular assist device (BiVAD) support for modes of reduced speed (BiVAD-RS) and banded outflow (BiVAD-B). The HVAD flow estimator was evaluated in a mock circulatory loop under changes in systemic and pulmonary vascular resistance, heart rate, central venous pressure, and simulated hematocrit (correlated to viscosity). A difference was found between mean estimated and mean measured flow for LVAD (0.1 ± 0.3 L/min), BiVAD-RS (-0.1 ± 0.2 L/min), and BiVAD-B (0 ± 0.2 L/min). Analysis of the flow ...
    View more >
    This study investigated the accuracy of the HeartWare HVAD flow estimator for left ventricular assist device (LVAD) support and biventricular assist device (BiVAD) support for modes of reduced speed (BiVAD-RS) and banded outflow (BiVAD-B). The HVAD flow estimator was evaluated in a mock circulatory loop under changes in systemic and pulmonary vascular resistance, heart rate, central venous pressure, and simulated hematocrit (correlated to viscosity). A difference was found between mean estimated and mean measured flow for LVAD (0.1 ± 0.3 L/min), BiVAD-RS (-0.1 ± 0.2 L/min), and BiVAD-B (0 ± 0.2 L/min). Analysis of the flow waveform pulsatility showed good correlation for LVAD (r2= 0.98) with a modest spread in error (0.7 ± 0.1 L/min), while BiVAD-RS and BiVAD-B showed similar spread in error (0.7 ± 0.3 and 0.7 ± 0.2 L/min, respectively), with much lower correlation (r2= 0.85 and r2= 0.60, respectively). This study demonstrated that the mean flow error of the HVAD flow estimator is similar when the device is used in LVAD, BiVAD-RS, or BiVAD-B configuration. However, the instantaneous flow waveform should be interpreted with caution, particularly in the cases of BiVAD support.
    View less >
    Journal Title
    ASAIO journal
    Volume
    67
    Issue
    4
    DOI
    https://doi.org/10.1097/MAT.0000000000001247
    Subject
    Biomedical engineering
    Science & Technology
    Life Sciences & Biomedicine
    Transplantation
    Publication URI
    http://hdl.handle.net/10072/412646
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander