Lakes or wetlands? A comment on ‘The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons’ by Enzel et al.
View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Engel, Max
Matter, Albert
Parker, Adrian G
Parton, Ash
Petraglia, Michael D
Preston, Gareth W
Preusser, Frank
Griffith University Author(s)
Year published
2017
Metadata
Show full item recordAbstract
Enzel et al. (2015) reassess sedimentary records of Early to Mid-Holocene lake sites in Arabia based on a reinterpretation of published multiproxy data and a qualitative analysis of satellite imagery. The authors conclude that these sites represent palaeo-wetland environments rather than palaeolakes and that the majority of the Arabian Peninsula experienced no or, if at all, only a very minor increase of rainfall at that time mainly due to eastward expansion of the East African Summer Monsoon. We disagree with their reassessment and identify several cases where unequivocal evidence for early Late Pleistocene and Early to ...
View more >Enzel et al. (2015) reassess sedimentary records of Early to Mid-Holocene lake sites in Arabia based on a reinterpretation of published multiproxy data and a qualitative analysis of satellite imagery. The authors conclude that these sites represent palaeo-wetland environments rather than palaeolakes and that the majority of the Arabian Peninsula experienced no or, if at all, only a very minor increase of rainfall at that time mainly due to eastward expansion of the East African Summer Monsoon. We disagree with their reassessment and identify several cases where unequivocal evidence for early Late Pleistocene and Early to Mid-Holocene perennial lake environments in Arabia, lasting for centuries to millennia, was neglected by Enzel et al. (2015). Here we summarize findings which indicate the presence of lakes from the sites of Jubbah, Tayma, Mundafan (all Saudi Arabia), Wahalah, Awafi (both UAE), and the Wahiba Sands (Oman), supported by evidence including occurrence of barnacle colonies in living position, remnant bioclastic shoreline deposits, undisturbed varve formation, shallowing-up lacustrine sequences, various aquatic freshwater, brackish and saline micro- and macrofossils, such as ichnofaunal remains, which are the result of prolonged field-based research. While the precise depth, hydrology and ecology of these water bodies is still not entirely resolved, their perennial nature is indicative of a markedly increased precipitation regime, which, in combination with more abundant groundwater and increased spring outflow in terminal basins fed by charged aquifers, was sufficient to overcome evaporative losses. The palaeolakes' influence on sustaining prehistoric populations is corroborated by the presence of rich archaeological evidence.
View less >
View more >Enzel et al. (2015) reassess sedimentary records of Early to Mid-Holocene lake sites in Arabia based on a reinterpretation of published multiproxy data and a qualitative analysis of satellite imagery. The authors conclude that these sites represent palaeo-wetland environments rather than palaeolakes and that the majority of the Arabian Peninsula experienced no or, if at all, only a very minor increase of rainfall at that time mainly due to eastward expansion of the East African Summer Monsoon. We disagree with their reassessment and identify several cases where unequivocal evidence for early Late Pleistocene and Early to Mid-Holocene perennial lake environments in Arabia, lasting for centuries to millennia, was neglected by Enzel et al. (2015). Here we summarize findings which indicate the presence of lakes from the sites of Jubbah, Tayma, Mundafan (all Saudi Arabia), Wahalah, Awafi (both UAE), and the Wahiba Sands (Oman), supported by evidence including occurrence of barnacle colonies in living position, remnant bioclastic shoreline deposits, undisturbed varve formation, shallowing-up lacustrine sequences, various aquatic freshwater, brackish and saline micro- and macrofossils, such as ichnofaunal remains, which are the result of prolonged field-based research. While the precise depth, hydrology and ecology of these water bodies is still not entirely resolved, their perennial nature is indicative of a markedly increased precipitation regime, which, in combination with more abundant groundwater and increased spring outflow in terminal basins fed by charged aquifers, was sufficient to overcome evaporative losses. The palaeolakes' influence on sustaining prehistoric populations is corroborated by the presence of rich archaeological evidence.
View less >
Journal Title
Global and Planetary Change
Volume
148
Copyright Statement
© 2016 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Earth sciences
Science & Technology
Physical Sciences
Geography, Physical
Geosciences, Multidisciplinary
Physical Geography