• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • OCT chorio-retinal segmentation with adversarial loss

    Author(s)
    Kugelman, J
    Alonso-Caneiro, D
    Read, SA
    Vincent, SJ
    Collins, MJ
    Griffith University Author(s)
    Alonso-Caneiro, David
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Deep learning methods provide state-of-the-art performance for the semantic segmentation of the retina and choroid in optical coherence tomography (OCT) images, enabling rapid, accurate and automatic analyses. However, high difficulty scans can still pose a problem even for the current state-of-the-art methods. Generative adversarial networks (GANs), are a family of deep learning methods that provide significant benefits for several applications due to their ability to learn complex data distributions, such as those of large image datasets. Segmentation is one of these applications that has been investigated in several ...
    View more >
    Deep learning methods provide state-of-the-art performance for the semantic segmentation of the retina and choroid in optical coherence tomography (OCT) images, enabling rapid, accurate and automatic analyses. However, high difficulty scans can still pose a problem even for the current state-of-the-art methods. Generative adversarial networks (GANs), are a family of deep learning methods that provide significant benefits for several applications due to their ability to learn complex data distributions, such as those of large image datasets. Segmentation is one of these applications that has been investigated in several modalities including retinal fundus image analysis, resulting in performance improvements when incorporating an adversarial loss for segmentation. However, the application of GAN-based segmentation to OCT images has not been investigated in detail and has not been studied at all in the context of choroidal segmentation. In this study, we investigate the use of a GAN to perform semantic segmentation of the retina and choroid in OCT images, by replacing the traditional segmentation loss with an adversarial loss. A detailed analysis of important training parameters and network architecture choices is provided to 1) better understand their behavior and 2) to optimize performance for chorio-retinal segmentation in OCT images. A key difference of this study is that, by considering the loss in isolation and comparing to traditional segmentation losses using an identical segmentation network, an unbiased and transparent comparison is performed. Using an optimized adversarial loss, strong performance is observed, providing near comparable performance to traditional segmentation losses. The results from this experiment provide a strong foundation for future work with GAN-based OCT retinal and choroidal segmentation.
    View less >
    Conference Title
    DICTA 2021 - 2021 International Conference on Digital Image Computing: Techniques and Applications
    DOI
    https://doi.org/10.1109/DICTA52665.2021.9647099
    Subject
    Biomedical imaging
    Publication URI
    http://hdl.handle.net/10072/412967
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander