• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • On training targets for deep learning approaches to clean speech magnitude spectrum estimation

    View/Open
    Nicolson494128-Published.pdf (1.645Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Nicolson, Aaron
    Paliwal, Kuldip K
    Griffith University Author(s)
    Nicolson, Aaron M.
    Paliwal, Kuldip K.
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Estimation of the clean speech short-time magnitude spectrum (MS) is key for speech enhancement and separation. Moreover, an automatic speech recognition (ASR) system that employs a front-end relies on clean speech MS estimation to remain robust. Training targets for deep learning approaches to clean speech MS estimation fall into three categories: computational auditory scene analysis (CASA), MS, and minimum mean square error (MMSE) estimator training targets. The choice of the training target can have a significant impact on speech enhancement/separation and robust ASR performance. Motivated by this, the training target ...
    View more >
    Estimation of the clean speech short-time magnitude spectrum (MS) is key for speech enhancement and separation. Moreover, an automatic speech recognition (ASR) system that employs a front-end relies on clean speech MS estimation to remain robust. Training targets for deep learning approaches to clean speech MS estimation fall into three categories: computational auditory scene analysis (CASA), MS, and minimum mean square error (MMSE) estimator training targets. The choice of the training target can have a significant impact on speech enhancement/separation and robust ASR performance. Motivated by this, the training target that produces enhanced/separated speech at the highest quality and intelligibility and that which is best for an ASR front-end is found. Three different deep neural network (DNN) types and two datasets, which include real-world nonstationary and coloured noise sources at multiple signal-to-noise ratio (SNR) levels, were used for evaluation. Ten objective measures were employed, including the word error rate of the Deep Speech ASR system. It is found that training targets that estimate the a priori SNR for MMSE estimators produce the highest objective quality scores. Moreover, it is established that the gain of MMSE estimators and the ideal amplitude mask produce the highest objective intelligibility scores and are most suitable for an ASR front-end.
    View less >
    Journal Title
    Journal of the Acoustical Society of America
    Volume
    149
    Issue
    5
    DOI
    https://doi.org/10.1121/10.0004823
    Copyright Statement
    © 2021 Acoustical Society of America. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Speech pathology
    Science & Technology
    Life Sciences & Biomedicine
    Acoustics
    Audiology & Speech-Language Pathology
    Publication URI
    http://hdl.handle.net/10072/412988
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander