• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Evaluation of Four Multiple Imputation Methods for Handling Missing Binary Outcome Data in the Presence of an Interaction between a Dummy and a Continuous Variable

    Thumbnail
    View/Open
    Bahrampour498945-Published.pdf (1.269Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Javadi, Sara
    Bahrampour, Abbas
    Saber, Mohammad Mehdi
    Garrusi, Behshid
    Baneshi, Mohammad Reza
    Griffith University Author(s)
    Bahrampour, Abbas
    Year published
    2021
    Metadata
    Show full item record
    Abstract
    Multiple imputation by chained equations (MICE) is the most common method for imputing missing data. In the MICE algorithm, imputation can be performed using a variety of parametric and nonparametric methods. The default setting in the implementation of MICE is for imputation models to include variables as linear terms only with no interactions, but omission of interaction terms may lead to biased results. It is investigated, using simulated and real datasets, whether recursive partitioning creates appropriate variability between imputations and unbiased parameter estimates with appropriate confidence intervals. We compared ...
    View more >
    Multiple imputation by chained equations (MICE) is the most common method for imputing missing data. In the MICE algorithm, imputation can be performed using a variety of parametric and nonparametric methods. The default setting in the implementation of MICE is for imputation models to include variables as linear terms only with no interactions, but omission of interaction terms may lead to biased results. It is investigated, using simulated and real datasets, whether recursive partitioning creates appropriate variability between imputations and unbiased parameter estimates with appropriate confidence intervals. We compared four multiple imputation (MI) methods on a real and a simulated dataset. MI methods included using predictive mean matching with an interaction term in the imputation model in MICE (MICE-interaction), classification and regression tree (CART) for specifying the imputation model in MICE (MICE-CART), the implementation of random forest (RF) in MICE (MICE-RF), and MICE-Stratified method. We first selected secondary data and devised an experimental design that consisted of 40 scenarios (2 × 5 × 4), which differed by the rate of simulated missing data (10%, 20%, 30%, 40%, and 50%), the missing mechanism (MAR and MCAR), and imputation method (MICE-Interaction, MICE-CART, MICE-RF, and MICE-Stratified). First, we randomly drew 700 observations with replacement 300 times, and then the missing data were created. The evaluation was based on raw bias (RB) as well as five other measurements that were averaged over the repetitions. Next, in a simulation study, we generated data 1000 times with a sample size of 700. Then, we created missing data for each dataset once. For all scenarios, the same criteria were used as for real data to evaluate the performance of methods in the simulation study. It is concluded that, when there is an interaction effect between a dummy and a continuous predictor, substantial gains are possible by using recursive partitioning for imputation compared to parametric methods, and also, the MICE-Interaction method is always more efficient and convenient to preserve interaction effects than the other methods.
    View less >
    Journal Title
    Journal of Probability and Statistics
    Volume
    2021
    DOI
    https://doi.org/10.1155/2021/6668822
    Copyright Statement
    © 2021 Sara Javadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Statistics
    Science & Technology
    Physical Sciences
    Mathematics
    CLASSIFICATION
    Probability
    Publication URI
    http://hdl.handle.net/10072/413023
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander