• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Personalized On-Device E-health Analytics with Decentralized Block Coordinate Descent

    View/Open
    Nguyen528146-Published.pdf (518.6Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Ye, G
    Yin, H
    Chen, T
    Xu, M
    Nguyen, QVH
    Song, J
    Griffith University Author(s)
    Nguyen, Henry
    Year published
    2022
    Metadata
    Show full item record
    Abstract
    Actuated by the growing attention to personal healthcare and the pandemic, the popularity of E-health is proliferating. Nowadays, enhancement on medical diagnosis via machine learning models has been highly effective in many aspects of e-health analytics. Nevertheless, in the classic cloud-based/centralized e-health paradigms, all the data will be centrally stored on the server to facilitate model training, which inevitably incurs privacy concerns and high time delay. Distributed solutions like Decentralized Stochastic Gradient Descent (D-SGD) are proposed to provide safe and timely diagnostic results based on personal ...
    View more >
    Actuated by the growing attention to personal healthcare and the pandemic, the popularity of E-health is proliferating. Nowadays, enhancement on medical diagnosis via machine learning models has been highly effective in many aspects of e-health analytics. Nevertheless, in the classic cloud-based/centralized e-health paradigms, all the data will be centrally stored on the server to facilitate model training, which inevitably incurs privacy concerns and high time delay. Distributed solutions like Decentralized Stochastic Gradient Descent (D-SGD) are proposed to provide safe and timely diagnostic results based on personal devices. However, methods like D-SGD are subject to the gradient vanishing issue and usually proceed slowly at the early training stage, thereby impeding the effectiveness and efficiency of training. In addition, existing methods are prone to learning models that are biased towards users with dense data, compromising the fairness when providing E-health analytics for minority groups. In this paper, we propose a Decentralized Block Coordinate Descent (D-BCD) learning framework that can better optimize deep neural network-based models distributed on decentralized devices for E-health analytics. As a gradient-free optimization method, Block Coordinate Descent (BCD) mitigates the gradient vanishing issue and converges faster at the early stage compared with the conventional gradient-based optimization. To overcome the potential data scarcity issues for users local data, we propose similarity-based model aggregation that allows each on-device model to leverage knowledge from similar neighbor models, so as to achieve both personalization and high accuracy for the learned models. Benchmarking experiments on three real-world datasets illustrate the effectiveness and practicality of our proposed DBCD, where additional simulation study showcases the strong applicability of D-BCD in real-life E-health scenarios.
    View less >
    Journal Title
    IEEE Journal of Biomedical and Health Informatics
    DOI
    https://doi.org/10.1109/JBHI.2022.3140455
    Copyright Statement
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publication URI
    http://hdl.handle.net/10072/413069
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander