• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Deep learning approaches for segmenting Bruch's membrane opening from OCT volumes

    View/Open
    Alonso-Caneiro958642-Published.pdf (4.275Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Sułot, D
    Alonso-Caneiro, D
    Robert Iskander, D
    Collins, MJ
    Griffith University Author(s)
    Alonso-Caneiro, David
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Automated segmentation of the eye's morphological features in OCT datasets is fundamental to support rapid clinical decision making and to avoid time-consuming manual segmentation of the images. In recent years, deep learning (DL) techniques have become a commonly employed approach to tackle image analysis problems. This study provides a description of the development of automated DL segmentation methods of the Bruch's membrane opening (BMO) from a series of OCT cross-sectional scans. A range of DL techniques are systematically evaluated, with the secondary goal to understand the effect of the network input size on the model ...
    View more >
    Automated segmentation of the eye's morphological features in OCT datasets is fundamental to support rapid clinical decision making and to avoid time-consuming manual segmentation of the images. In recent years, deep learning (DL) techniques have become a commonly employed approach to tackle image analysis problems. This study provides a description of the development of automated DL segmentation methods of the Bruch's membrane opening (BMO) from a series of OCT cross-sectional scans. A range of DL techniques are systematically evaluated, with the secondary goal to understand the effect of the network input size on the model performance. The results indicate that a fully semantic approach, in which the whole B-scan is considered with data augmentation, results in the best performance, achieving high levels of similarity metrics with a dice coefficient of 0.995 and BMO boundary localization with a mean absolute error of 1.15 pixels. The work further highlights the importance of fully semantic methods over patch-based techniques in the classification of OCT regions.
    View less >
    Journal Title
    OSA Continuum
    Volume
    3
    Issue
    12
    DOI
    https://doi.org/10.1364/OSAC.403102
    Copyright Statement
    © 2020 Optica Publishing Group. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.
    Subject
    Ophthalmology and optometry
    Deep learning
    Publication URI
    http://hdl.handle.net/10072/413105
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander