• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effective 3D Building Extraction from Aerial Point Cloud Data

    View/Open
    Embargoed until: 2023-03-08
    Author(s)
    Dey, Emon Kumar
    Primary Supervisor
    Awrangjeb, Mohammad
    Other Supervisors
    Stantic, Bela
    Tarsha Kurdi, Fayez
    Year published
    2022-03-08
    Metadata
    Show full item record
    Abstract
    Building extraction is important for a wider range of applications including smart city planning, disaster management, security, and cadastral mapping. This thesis mainly aims to present an effective data-driven strategy for building extraction using aerial Light Detection And Ranging (LiDAR) point cloud data. The LiDAR data provides highly accurate three-dimensional (3D) positional information. Therefore, studies on building extraction using LiDAR data have broadened in scope over time. Outliers, inharmonious input data behaviour, innumerable building structure possibilities, and heterogeneous environments are major challenges ...
    View more >
    Building extraction is important for a wider range of applications including smart city planning, disaster management, security, and cadastral mapping. This thesis mainly aims to present an effective data-driven strategy for building extraction using aerial Light Detection And Ranging (LiDAR) point cloud data. The LiDAR data provides highly accurate three-dimensional (3D) positional information. Therefore, studies on building extraction using LiDAR data have broadened in scope over time. Outliers, inharmonious input data behaviour, innumerable building structure possibilities, and heterogeneous environments are major challenges that need to be addressed for an effective 3D building extraction using LiDAR data. Outliers can cause the extraction of erroneous roof planes, incorrect boundaries, and over-segmentation of the extracted buildings. Due to the uneven point densities and heterogeneous building structures, small roof parts often remain undetected. Moreover, finding and using a realistic performance metric to evaluate the extracted buildings is another challenge. Inaccurate identification of sharp features, coplanar points, and boundary feature points often causes inaccurate roof plane segmentation and overall 3D outline generation for a building. To address these challenges, first, this thesis proposes a robust variable point neighbourhood estimation method. Considering the specific scanline properties associated with aerial LiDAR data, the proposed method automatically estimates an optimal and realistic neighbourhood for each point to solve the shortcomings of existing fixed neighbourhood methods in uneven or abrupt point densities. Using the estimated variable neighbourhood, a robust z-score and a distance-based outlier factor are calculated for each point in the input data. Based on these two measurements, an effective outlier detection method is proposed which can preserve more than 98% of inliers and remove outliers with better precision than the existing state-of-the-art methods. Then, individual roof planes are extracted in a robust way from the separated outlier free coplanar points based on the M-estimator SAmple Consensus (MSAC) plane-ftting algorithm. The proposed technique is capable of extracting small real roof planes, while avoiding spurious roof planes caused by the remaining outliers, if any. Individual buildings are then extracted precisely by grouping adjacent roof planes into clusters. Next, to assess the extracted buildings and individual roof plane boundaries, a realistic evaluation metric is proposed based on a new robust corner correspondence algorithm. The metric is defined as the average minimum distance davg from the extracted boundary points to their actual corresponding reference lines. It strictly follows the definition of a standard mathematical metric, and addresses the shortcomings of the existing metrics. In addition, during the evaluation, the proposed metric separately identifies the underlap and extralap areas in an extracted building. Furthermore, finding precise 3D feature points (e.g., fold and boundary) is necessary for tracing feature lines to describe a building outline. It is also important for accurate roof plane extraction and for establishing relationships between the correctly extracted planes so as to facilitate a more robust 3D building extraction. Thus, this thesis presents a robust fold feature point extraction method based on the calculated normal of the individual point. Later, a method to extract the feature points representing the boundaries is also developed based on the distance from a point to the calculated mean of its estimated neighbours. In the context of the accuracy evaluation, the proposed methods show more than 90% F1-scores on the generated ground truth data. Finally, machine learning techniques are applied to circumvent the problems (e.g., selecting manual thresholds for different parameters) of existing rule-based approaches for roof feature point extraction and classification. Seven effective geometric and statistical features are calculated for each point to train and test the machine learning classifiers using the appropriate ground truth data. Four primary classes of building roof point cloud are considered, and promising results for each of the classes have been achieved, confirming the competitive performance of the classification over the state-of-the-art techniques. At the end of this thesis, using the classified roof feature points, a more robust plane segmentation algorithm is demonstrated for extracting the roof planes of individual buildings.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    School of Info & Comm Tech
    DOI
    https://doi.org/10.25904/1912/4467
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Subject
    building extraction
    Light Detection And Ranging (LiDAR)
    3D building extraction
    neighbourhood
    M-estimator SAmple Consensus (MSAC)
    machine learning techniques
    Publication URI
    http://hdl.handle.net/10072/413311
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander