Evaluation of the cyclic and torsional fatigue resistance of thermally treated hyflex CM versus aurum blue nickel-titanium rotary instruments
View/ Open
File version
Version of Record (VoR)
Author(s)
Braga, T
Vivan, RR
Alcalde, MP
De Camargo, JM
Duarte, MAH
Griffith University Author(s)
Year published
2021
Metadata
Show full item recordAbstract
Introduction: We aim to evaluate the cyclic and torsional fatigue resistance of two rotary instrumentsinstruments, Hyflex CM 25/0.06 (HCM) (Coletene-Whaledent, Allstetten, Switzerland) and Aurum Blue (AB) 25/0.06 (Meta-Biomed, Republic of Korea). Methods and Materials: Forty rotary instruments, HCM 25/0.06 and AB 25/0.06 (n=20 each) were used. The instruments were rotated in an artificial stainless steel canal with a 60° angle and a 5-mm radius of curvature (n=10) at body temperature (35°±1°C). The torsional test evaluated the torque and angle of rotation at failure of new instruments (n=10) in the portion 3 mm from the tip ...
View more >Introduction: We aim to evaluate the cyclic and torsional fatigue resistance of two rotary instrumentsinstruments, Hyflex CM 25/0.06 (HCM) (Coletene-Whaledent, Allstetten, Switzerland) and Aurum Blue (AB) 25/0.06 (Meta-Biomed, Republic of Korea). Methods and Materials: Forty rotary instruments, HCM 25/0.06 and AB 25/0.06 (n=20 each) were used. The instruments were rotated in an artificial stainless steel canal with a 60° angle and a 5-mm radius of curvature (n=10) at body temperature (35°±1°C). The torsional test evaluated the torque and angle of rotation at failure of new instruments (n=10) in the portion 3 mm from the tip according to ISO 3630-1. The fractured surface of each fragment was observed by scanning electron microscopy. The data were analyzed using unpaired student’s t- test, and the level of significance was set at 5%. Results: AB 25/0.06 had significantly greater number of cycles to failure than HCM 25/0.06 (P<0.05). The torsional test showed there were no significant differences in the torsional strength and angular rotation to fracture between the groups (P>0.05). Conclusion: Based on this in vitro study, AB 25/0.06 instrument was more resistant to cyclic fatigue than the HCM 25/0.06 instrument, suggested that these instruments are safer than HCM 25/0.06 for the preparation of severely curved canals. However; there was no significant difference in the torsional properties of the two instruments then appear to have similar performance during constricted canal preparation.
View less >
View more >Introduction: We aim to evaluate the cyclic and torsional fatigue resistance of two rotary instrumentsinstruments, Hyflex CM 25/0.06 (HCM) (Coletene-Whaledent, Allstetten, Switzerland) and Aurum Blue (AB) 25/0.06 (Meta-Biomed, Republic of Korea). Methods and Materials: Forty rotary instruments, HCM 25/0.06 and AB 25/0.06 (n=20 each) were used. The instruments were rotated in an artificial stainless steel canal with a 60° angle and a 5-mm radius of curvature (n=10) at body temperature (35°±1°C). The torsional test evaluated the torque and angle of rotation at failure of new instruments (n=10) in the portion 3 mm from the tip according to ISO 3630-1. The fractured surface of each fragment was observed by scanning electron microscopy. The data were analyzed using unpaired student’s t- test, and the level of significance was set at 5%. Results: AB 25/0.06 had significantly greater number of cycles to failure than HCM 25/0.06 (P<0.05). The torsional test showed there were no significant differences in the torsional strength and angular rotation to fracture between the groups (P>0.05). Conclusion: Based on this in vitro study, AB 25/0.06 instrument was more resistant to cyclic fatigue than the HCM 25/0.06 instrument, suggested that these instruments are safer than HCM 25/0.06 for the preparation of severely curved canals. However; there was no significant difference in the torsional properties of the two instruments then appear to have similar performance during constricted canal preparation.
View less >
Journal Title
Iranian Endodontic Journal
Volume
16
Issue
2
Copyright Statement
© The Author(s) 2018. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited. If you alter, transform, or build upon this work, you may distribute the resulting work only under a licence identical to this one.
Subject
Dentistry