• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Development of a biomarker panel to distinguish risk of progressive chronic kidney disease

    View/Open
    Tan456602-Published.pdf (961.3Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Owens, E
    Tan, KS
    Ellis, R
    Vecchio, SD
    Humphries, T
    Lennan, E
    Vesey, D
    Healy, H
    Hoy, W
    Gobe, G
    Griffith University Author(s)
    Tan, Ken-Soon
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    Chronic kidney disease (CKD) patients typically progress to kidney failure, but the rate of progression differs per patient or may not occur at all. Current CKD screening methods are sub-optimal at predicting progressive kidney function decline. This investigation develops a model for predicting progressive CKD based on a panel of biomarkers representing the pathophysiological processes of CKD, kidney function, and common CKD comorbidities. Two patient cohorts are utilised: The CKD Queensland Registry (n = 418), termed the Biomarker Discovery cohort; and the CKD Biobank (n = 62), termed the Predictive Model cohort. Progression ...
    View more >
    Chronic kidney disease (CKD) patients typically progress to kidney failure, but the rate of progression differs per patient or may not occur at all. Current CKD screening methods are sub-optimal at predicting progressive kidney function decline. This investigation develops a model for predicting progressive CKD based on a panel of biomarkers representing the pathophysiological processes of CKD, kidney function, and common CKD comorbidities. Two patient cohorts are utilised: The CKD Queensland Registry (n = 418), termed the Biomarker Discovery cohort; and the CKD Biobank (n = 62), termed the Predictive Model cohort. Progression status is assigned with a composite outcome of a ≥30% decline in eGFR from baseline, initiation of dialysis, or kidney transplantation. Baseline biomarker measurements are compared between progressive and non-progressive patients via logistic regression. In the Biomarker Discovery cohort, 13 biomarkers differed significantly between progressive and non-progressive patients, while 10 differed in the Predictive Model cohort. From this, a predictive model, based on a biomarker panel of serum creatinine, osteopontin, tryptase, urea, and eGFR, was calculated via linear discriminant analysis. This model has an accuracy of 84.3% when predicting future progressive CKD at baseline, greater than eGFR (66.1%), sCr (67.7%), albuminuria (53.2%), or albumin-creatinine ratio (53.2%).
    View less >
    Journal Title
    Biomedicines
    Volume
    8
    Issue
    12
    DOI
    https://doi.org/10.3390/biomedicines8120606
    Copyright Statement
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Clinical sciences
    Nephrology and urology
    Publication URI
    http://hdl.handle.net/10072/413377
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander