• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Topography and land use effects on spatial variability of soil denitrification and related soil properties in riparian wetlands

    Author(s)
    Xiong, Ziqian
    Li, Shouchun
    Yao, Lu
    Liu, Guihua
    Zhang, Quanfa
    Liu, Wenzhi
    Griffith University Author(s)
    Yao, Lu
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Many rivers in the Yangtze River basin have suffered from excess nitrogen due to increased human activities in recent decades. Soil denitrification in riparian wetlands is a key process for removing nitrogen from polluted surface runoff and controlling eutrophication in river ecosystems. Currently, little is known about the influence of topography and land use on the riparian denitrification characteristics in the Yangtze River basin. In this study, we used the acetylene block technique to determine the spatial variability of the soil potential and unamended dentrification rates of 42 riparian wetlands in the Han River basin ...
    View more >
    Many rivers in the Yangtze River basin have suffered from excess nitrogen due to increased human activities in recent decades. Soil denitrification in riparian wetlands is a key process for removing nitrogen from polluted surface runoff and controlling eutrophication in river ecosystems. Currently, little is known about the influence of topography and land use on the riparian denitrification characteristics in the Yangtze River basin. In this study, we used the acetylene block technique to determine the spatial variability of the soil potential and unamended dentrification rates of 42 riparian wetlands in the Han River basin of China. The results indicated that riparian soils showed great spatial variation in potential denitrification, unamended dentrification and most of the measured physical and chemical properties. Both potential and unamended dentrification rates were positively associated with soil moisture, percentage of fine substrate, organic matter and nitrogen contents, but were negatively related to soil pH and bulk density. Agricultural riparian soils had unamended denitrification rates higher than forested riparian soils. Spearman correlation analysis also indicated that a topographic factor (i.e., elevation) had a negative effect on riparian denitrification rates. Our results suggest that both topography and land use can indirectly influence the soil denitrification rates in riparian wetlands. Low-elevation areas in the agricultural riparian zone are good candidates for wetland restoration or creation for nitrogen removal and water quality improvement in the Yangtze River basin.
    View less >
    Journal Title
    Ecological Engineering
    Volume
    83
    DOI
    https://doi.org/10.1016/j.ecoleng.2015.04.094
    Subject
    Earth sciences
    Environmental sciences
    Engineering
    Science & Technology
    Life Sciences & Biomedicine
    Ecology
    Engineering, Environmental
    Publication URI
    http://hdl.handle.net/10072/413530
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander