• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • OCT Retinal and Choroidal Layer Instance Segmentation Using Mask R-CNN

    View/Open
    Alonso-Caneiro1292079-Published.pdf (2.152Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Viedma, IA
    Alonso-Caneiro, D
    Read, SA
    Collins, MJ
    Griffith University Author(s)
    Alonso-Caneiro, David
    Year published
    2022
    Metadata
    Show full item record
    Abstract
    Optical coherence tomography (OCT) of the posterior segment of the eye provides high-resolution cross-sectional images that allow visualization of individual layers of the posterior eye tissue (the retina and choroid), facilitating the diagnosis and monitoring of ocular diseases and abnormalities. The manual analysis of retinal OCT images is a time-consuming task; therefore, the development of automatic image analysis methods is important for both research and clinical applications. In recent years, deep learning methods have emerged as an alternative method to perform this segmentation task. A large number of the proposed ...
    View more >
    Optical coherence tomography (OCT) of the posterior segment of the eye provides high-resolution cross-sectional images that allow visualization of individual layers of the posterior eye tissue (the retina and choroid), facilitating the diagnosis and monitoring of ocular diseases and abnormalities. The manual analysis of retinal OCT images is a time-consuming task; therefore, the development of automatic image analysis methods is important for both research and clinical applications. In recent years, deep learning methods have emerged as an alternative method to perform this segmentation task. A large number of the proposed segmentation methods in the literature focus on the use of encoder–decoder architectures, such as U-Net, while other architectural modalities have not received as much attention. In this study, the application of an instance segmentation method based on region proposal architecture, called the Mask R-CNN, is explored in depth in the context of retinal OCT image segmentation. The importance of adequate hyper-parameter selection is examined, and the performance is compared with commonly used techniques. The Mask R-CNN provides a suitable method for the segmentation of OCT images with low segmentation boundary errors and high Dice coefficients, with segmentation performance comparable with the commonly used U-Net method. The Mask R-CNN has the advantage of a simpler extraction of the boundary positions, especially avoiding the need for a time-consuming graph search method to extract boundaries, which reduces the inference time by 2.5 times compared to U-Net, while segmenting seven retinal layers.
    View less >
    Journal Title
    Sensors
    Volume
    22
    Issue
    5
    DOI
    https://doi.org/10.3390/s22052016
    Copyright Statement
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Publication URI
    http://hdl.handle.net/10072/413540
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander