• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Bismuth oxyiodide microflower-derived catalysts for efficient CO2 electroreduction in a wide negative potential region

    Author(s)
    Liu, PF
    Zu, MY
    Zheng, LR
    Yang, HG
    Griffith University Author(s)
    Yang, Huagui
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    It is of paramount importance to design and develop highly active and selective electrocatalysts for the CO2 reduction reaction. Herein, we obtained bismuth-based catalysts consisting of oxidized Bi2O2CO3 and metallic Bi featuring local shortened inter-layer Bi-Bi bonds from in situ reduction of bismuth oxyiodide (BiOI) microflowers, which showed over 90% formate faradaic efficiency in a wide negative potential region.It is of paramount importance to design and develop highly active and selective electrocatalysts for the CO2 reduction reaction. Herein, we obtained bismuth-based catalysts consisting of oxidized Bi2O2CO3 and metallic Bi featuring local shortened inter-layer Bi-Bi bonds from in situ reduction of bismuth oxyiodide (BiOI) microflowers, which showed over 90% formate faradaic efficiency in a wide negative potential region.
    View less >
    Journal Title
    Chemical Communications
    Volume
    55
    Issue
    82
    DOI
    https://doi.org/10.1039/c9cc05089b
    Subject
    Chemical sciences
    Publication URI
    http://hdl.handle.net/10072/413645
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander