• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Accelerated proton transmission in metal–organic frameworks for the efficient reduction of CO2 in aqueous solutions

    Author(s)
    Mao, F
    Jin, YH
    Liu, PF
    Yang, P
    Zhang, L
    Chen, L
    Cao, XM
    Gu, J
    Yang, HG
    Griffith University Author(s)
    Yang, Huagui
    Year published
    2019
    Metadata
    Show full item record
    Abstract
    Metal-organic frameworks (MOFs) have exhibited huge potential in the field of CO2 electroreduction but highly stable and active ones are still scarce. This study reports a (5,10,15,20-tetrakis(4-carboxyphenyl)porphyrinato)-Fe(iii) chloride (FeTCPPCl) co-building UiO-66 electrocatalyst for CO2 reduction in an aqueous solution. In situ X-ray absorption spectroscopy (XAS) measurements characterized its robust structure under catalysis. The unique framework of UiO-66 provides the available proton facilitator for improving CO2 reduction activity on iron porphyrin, and a concerted proton-electron transfer (CPET) mechanism might ...
    View more >
    Metal-organic frameworks (MOFs) have exhibited huge potential in the field of CO2 electroreduction but highly stable and active ones are still scarce. This study reports a (5,10,15,20-tetrakis(4-carboxyphenyl)porphyrinato)-Fe(iii) chloride (FeTCPPCl) co-building UiO-66 electrocatalyst for CO2 reduction in an aqueous solution. In situ X-ray absorption spectroscopy (XAS) measurements characterized its robust structure under catalysis. The unique framework of UiO-66 provides the available proton facilitator for improving CO2 reduction activity on iron porphyrin, and a concerted proton-electron transfer (CPET) mechanism might be considered for the catalytic pathway, achieving the highest faradaic efficiency of nearly 100% at an overpotential of 450 mV for turning CO2 to CO in the reported MOFs.
    View less >
    Journal Title
    Journal of Materials Chemistry A
    Volume
    7
    Issue
    40
    DOI
    https://doi.org/10.1039/c9ta07967j
    Subject
    Macromolecular and materials chemistry
    Materials engineering
    Other engineering
    Publication URI
    http://hdl.handle.net/10072/413646
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander