• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Xenobiotic and Immune-Relevant Molecular Biomarkers in Harbor Seals as Proxies for Pollutant Burden and Effects

    Author(s)
    Lehnert, Kristina
    Ronnenberg, Katrin
    Weijs, Liesbeth
    Covaci, Adrian
    Das, Krishna
    Hellwig, Veronika
    Siebert, Ursula
    Griffith University Author(s)
    Weijs, Liesbeth
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Harbor seals are exposed to increasing pressure caused by anthropogenic activities in their marine environment. Persistent organic pollutants (POPs) and trace elements are hazardous contaminants that accumulate in tissues of harbor seals. POPs and trace elements can negatively affect the immune-system and have been reported, e.g., to increase susceptibility to viral infections in seals. Biomarkers of the xenobiotic metabolism, cytokines, and heat-shock protein as cell mediators of the immune-system were established to evaluate the impact of environmental stressors on harbor seals. Harbor seals (n = 54) were captured on ...
    View more >
    Harbor seals are exposed to increasing pressure caused by anthropogenic activities in their marine environment. Persistent organic pollutants (POPs) and trace elements are hazardous contaminants that accumulate in tissues of harbor seals. POPs and trace elements can negatively affect the immune-system and have been reported, e.g., to increase susceptibility to viral infections in seals. Biomarkers of the xenobiotic metabolism, cytokines, and heat-shock protein as cell mediators of the immune-system were established to evaluate the impact of environmental stressors on harbor seals. Harbor seals (n = 54) were captured on sandbanks in the North Sea during 2009-2012. Health assessments, including hematology, were performed, and RNAlater blood samples were taken and analyzed using quantitative polymerase chain reaction. Normalized transcript copy numbers were correlated to hematology and POP concentration in blood and trace metals in blood and fur. A significant correlation between xenobiotic markers and contaminant burden was found. Significant interrelationships between markers and POP compounds, as well as with season, weight, and hematology values, indicate that biomarkers reflect pollutant exposure and effects. A significant relationship between cortisol levels and heat-shock protein expression was observed indicating stress experienced during restraint of the seals. Interleukin-10 transcription showed significant correlations with trace elements in fur pointing toward immune regulatory effects of metal exposure. The molecular markers prove to be an important noninvasive tool that reflects contaminant exposure and the impact of anthropogenic stressors in seal species. The connection between interleukin-2, xenobiotic markers, and pollutants may indicate immune suppression in animals exposed to contaminants with subsequent susceptibility to inflammatory disease.
    View less >
    Journal Title
    Archives of Environmental Contamination and Toxicology
    Volume
    70
    Issue
    1
    DOI
    https://doi.org/10.1007/s00244-015-0202-3
    Subject
    Pollution and contamination
    Biological oceanography
    Chemical oceanography
    Science & Technology
    Life Sciences & Biomedicine
    Toxicology
    Environmental Sciences & Ecology
    Publication URI
    http://hdl.handle.net/10072/413776
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander