• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Regulated P2P Energy Trading: A Typical Australian Distribution Network Case Study

    View/Open
    Azim1220828-Accepted.pdf (147.1Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Azim, M Imran
    Tushar, Wayes
    Saha, Tapan K
    Griffith University Author(s)
    Azim, Mohammad
    Year published
    2020
    Metadata
    Show full item record
    Abstract
    This paper presents an approach to deploy virtually settled peer-to-peer (P2P) energy trading in existing grid-connected networks without considering post-trading protection schemes that may be required for bus voltage regulation. To achieve this goal, this paper demonstrates to consider the maximum power export limit fixed by the network operators while modelling the P2P trading framework in the virtual layer and then to determine the traded quantity of each prosumer in the P2P market along with the associated price per unit of energy traded. The developed P2P mechanism in this paper is tested on a real low-voltage (LV) ...
    View more >
    This paper presents an approach to deploy virtually settled peer-to-peer (P2P) energy trading in existing grid-connected networks without considering post-trading protection schemes that may be required for bus voltage regulation. To achieve this goal, this paper demonstrates to consider the maximum power export limit fixed by the network operators while modelling the P2P trading framework in the virtual layer and then to determine the traded quantity of each prosumer in the P2P market along with the associated price per unit of energy traded. The developed P2P mechanism in this paper is tested on a real low-voltage (LV) distribution network in Australia, where the maximum local power injection limit has already been defined for the prosumers. The simulation results show that both prosumers and other customers of the network can still be benefited significantly, compared to the current feed-in-tariff (FiT) and electricity retail prices respectively, even though P2P traded quantities are regulated by the network operator. It is also observed that the prosumers' engagement in P2P trading at various time slots do not rise bus voltages beyond the prescribed limit. Thus, virtually settled P2P transactions considering the power export constraint are suitable for practical deployment.
    View less >
    Conference Title
    2020 IEEE Power & Energy Society General Meeting (PESGM)
    DOI
    https://doi.org/10.1109/PESGM41954.2020.9282128
    Copyright Statement
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Science & Technology
    Energy & Fuels
    Engineering, Electrical & Electronic
    Publication URI
    http://hdl.handle.net/10072/414119
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander