Regulated P2P Energy Trading: A Typical Australian Distribution Network Case Study
View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Azim, M Imran
Tushar, Wayes
Saha, Tapan K
Griffith University Author(s)
Year published
2020
Metadata
Show full item recordAbstract
This paper presents an approach to deploy virtually settled peer-to-peer (P2P) energy trading in existing grid-connected networks without considering post-trading protection schemes that may be required for bus voltage regulation. To achieve this goal, this paper demonstrates to consider the maximum power export limit fixed by the network operators while modelling the P2P trading framework in the virtual layer and then to determine the traded quantity of each prosumer in the P2P market along with the associated price per unit of energy traded. The developed P2P mechanism in this paper is tested on a real low-voltage (LV) ...
View more >This paper presents an approach to deploy virtually settled peer-to-peer (P2P) energy trading in existing grid-connected networks without considering post-trading protection schemes that may be required for bus voltage regulation. To achieve this goal, this paper demonstrates to consider the maximum power export limit fixed by the network operators while modelling the P2P trading framework in the virtual layer and then to determine the traded quantity of each prosumer in the P2P market along with the associated price per unit of energy traded. The developed P2P mechanism in this paper is tested on a real low-voltage (LV) distribution network in Australia, where the maximum local power injection limit has already been defined for the prosumers. The simulation results show that both prosumers and other customers of the network can still be benefited significantly, compared to the current feed-in-tariff (FiT) and electricity retail prices respectively, even though P2P traded quantities are regulated by the network operator. It is also observed that the prosumers' engagement in P2P trading at various time slots do not rise bus voltages beyond the prescribed limit. Thus, virtually settled P2P transactions considering the power export constraint are suitable for practical deployment.
View less >
View more >This paper presents an approach to deploy virtually settled peer-to-peer (P2P) energy trading in existing grid-connected networks without considering post-trading protection schemes that may be required for bus voltage regulation. To achieve this goal, this paper demonstrates to consider the maximum power export limit fixed by the network operators while modelling the P2P trading framework in the virtual layer and then to determine the traded quantity of each prosumer in the P2P market along with the associated price per unit of energy traded. The developed P2P mechanism in this paper is tested on a real low-voltage (LV) distribution network in Australia, where the maximum local power injection limit has already been defined for the prosumers. The simulation results show that both prosumers and other customers of the network can still be benefited significantly, compared to the current feed-in-tariff (FiT) and electricity retail prices respectively, even though P2P traded quantities are regulated by the network operator. It is also observed that the prosumers' engagement in P2P trading at various time slots do not rise bus voltages beyond the prescribed limit. Thus, virtually settled P2P transactions considering the power export constraint are suitable for practical deployment.
View less >
Conference Title
2020 IEEE Power & Energy Society General Meeting (PESGM)
Copyright Statement
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Subject
Science & Technology
Energy & Fuels
Engineering, Electrical & Electronic